結果
問題 | No.2948 move move rotti |
ユーザー | kk2 |
提出日時 | 2024-10-25 22:09:54 |
言語 | C++23(gcc13) (gcc 13.2.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 248 ms / 4,000 ms |
コード長 | 26,854 bytes |
コンパイル時間 | 3,406 ms |
コンパイル使用メモリ | 234,356 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-10-25 22:10:12 |
合計ジャッジ時間 | 6,218 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 80 ms
6,816 KB |
testcase_04 | AC | 54 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 57 ms
6,820 KB |
testcase_08 | AC | 194 ms
6,824 KB |
testcase_09 | AC | 193 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 6 ms
6,820 KB |
testcase_13 | AC | 28 ms
6,820 KB |
testcase_14 | AC | 24 ms
6,824 KB |
testcase_15 | AC | 34 ms
6,820 KB |
testcase_16 | AC | 172 ms
6,816 KB |
testcase_17 | AC | 93 ms
6,816 KB |
testcase_18 | AC | 228 ms
6,820 KB |
testcase_19 | AC | 116 ms
6,820 KB |
testcase_20 | AC | 157 ms
6,820 KB |
testcase_21 | AC | 226 ms
6,820 KB |
testcase_22 | AC | 70 ms
6,820 KB |
testcase_23 | AC | 248 ms
6,824 KB |
testcase_24 | AC | 55 ms
6,816 KB |
testcase_25 | AC | 82 ms
6,820 KB |
testcase_26 | AC | 2 ms
6,816 KB |
testcase_27 | AC | 2 ms
6,820 KB |
testcase_28 | AC | 4 ms
6,820 KB |
testcase_29 | AC | 2 ms
6,820 KB |
testcase_30 | AC | 2 ms
6,816 KB |
ソースコード
#ifndef GRAPH_GRAPH_TEMPLATE_HPP #define GRAPH_GRAPH_TEMPLATE_HPP 1 #include <cassert> #include <iostream> #include <type_traits> #include <utility> #include <vector> #ifndef TYPE_TRAITS_HPP #define TYPE_TRAITS_HPP 1 #include <istream> #include <ostream> #include <type_traits> namespace kk2 { template <typename T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value or std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <typename T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value or std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <typename T> using is_integral = typename std::conditional<std::is_integral<T>::value or is_signed_int128<T>::value or is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_signed = typename std::conditional<std::is_signed<T>::value or is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_unsigned = typename std::conditional<std::is_unsigned<T>::value or is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <typename T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <typename T> using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; template <typename T> using is_integral_t = std::enable_if_t<is_integral<T>::value>; template <typename T> using is_signed_t = std::enable_if_t<is_signed<T>::value>; template <typename T> using is_unsigned_t = std::enable_if_t<is_unsigned<T>::value>; template <typename T> using is_function_pointer = typename std::conditional<std::is_pointer_v<T> && std::is_function_v<std::remove_pointer_t<T>>, std::true_type, std::false_type>::type; template <typename T, std::enable_if_t<is_function_pointer<T>::value> * = nullptr> struct is_two_args_function_pointer : std::false_type {}; template <typename R, typename T1, typename T2> struct is_two_args_function_pointer<R (*)(T1, T2)> : std::true_type {}; template <typename T> using is_two_args_function_pointer_t = std::enable_if_t<is_two_args_function_pointer<T>::value>; namespace type_traits { struct istream_tag {}; struct ostream_tag {}; } // namespace type_traits template <typename T> using is_standard_istream = std::is_same<T, std::istream>; template <typename T> using is_standard_ostream = std::is_same<T, std::ostream>; template <typename T> using is_user_defined_istream = std::is_base_of<type_traits::istream_tag, T>; template <typename T> using is_user_defined_ostream = std::is_base_of<type_traits::ostream_tag, T>; template <typename T> using is_istream = typename std::conditional<is_standard_istream<T>::value || is_user_defined_istream<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_ostream = typename std::conditional<is_standard_ostream<T>::value || is_user_defined_ostream<T>::value, std::true_type, std::false_type>::type; template <typename T> using is_istream_t = std::enable_if_t<is_istream<T>::value>; template <typename T> using is_ostream_t = std::enable_if_t<is_ostream<T>::value>; } // namespace kk2 #endif // TYPE_TRAITS_HPP // #include "../type_traits/type_traits.hpp" namespace kk2 { namespace graph { struct empty {}; template <class T> struct _Edge { int from, to, id; T cost; _Edge(int to_, T cost_, int from_ = -1, int id_ = -1) : from(from_), to(to_), id(id_), cost(cost_) {} _Edge() : from(-1), to(-1), id(-1), cost() {} operator int() const { return to; } _Edge rev() const { return _Edge(from, cost, to, id); } template <class OStream, is_ostream_t<OStream> * = nullptr> friend OStream &operator<<(OStream &os, const _Edge &e) { if constexpr (std::is_same_v<T, empty>) return os << e.from << " -> " << e.to; else return os << e.from << " -> " << e.to << " : " << e.cost; } }; template <class T> using _Edges = std::vector<_Edge<T>>; template <class T, bool is_directed> struct AdjacencyList : std::vector<_Edges<T>> { using value_type = T; using edge_type = _Edge<T>; constexpr static bool directed() { return is_directed; } AdjacencyList() = default; AdjacencyList(int n_) : std::vector<_Edges<T>>(n_) {} AdjacencyList(int n_, int m_) : std::vector<_Edges<T>>(n_), edges(m_) {} AdjacencyList(int n_, const _Edges<T> &edges_) : std::vector<_Edges<T>>(n_), edges(edges_) { for (auto &&e : edges) { (*this)[e.from].emplace_back(e); if constexpr (!is_directed) (*this)[e.to].emplace_back(e); } } _Edges<T> edges; int num_vertices() const { return (int)this->size(); } int num_edges() const { return (int)edges.size(); } template <class IStream, is_istream_t<IStream> * = nullptr> AdjacencyList &input(IStream &is, bool oneindexed = false) { for (int i = 0; i < num_edges(); i++) { int u, v; T w{}; is >> u >> v; if constexpr (!std::is_same_v<T, empty>) is >> w; if (oneindexed) --u, --v; _add_edge<true>(u, v, w, i); } return *this; } void edge_clear() { for (auto &v : *this) v.clear(); edges.clear(); } void add_edge(int from, int to, T cost = T{}) { _add_edge<false>(from, to, cost, num_edges()); } private: template <bool update = false> void _add_edge(int from, int to, T cost, int id) { (*this)[from].emplace_back(to, cost, from, id); if constexpr (!is_directed) (*this)[to].emplace_back(from, cost, to, id); if constexpr (update) edges[id] = _Edge<T>(to, cost, from, id); else edges.emplace_back(to, cost, from, id); } }; template <class T> struct _pair { T cost; int id; _pair(T cost_, int id_) : cost(cost_), id(id_) {} _pair() : cost(), id(-1) {} operator bool() const { return id != -1; } template <class OStream, is_ostream_t<OStream> * = nullptr> friend OStream &operator<<(OStream &os, const _pair &p) { if constexpr (std::is_same_v<T, empty>) return os; else return os << p.cost; } }; template <class T> using _pairs = std::vector<_pair<T>>; template <class T, bool is_directed> struct AdjacencyMatrix : std::vector<_pairs<T>> { using value_type = T; using edge_type = _pair<T>; constexpr static bool directed() { return is_directed; } AdjacencyMatrix() = default; AdjacencyMatrix(int n_) : std::vector<_pairs<T>>(n_, _pairs<T>(n_)) {} AdjacencyMatrix(int n_, int m_) : std::vector<_pairs<T>>(n_, _pairs<T>(n_)), edges(m_) {} AdjacencyMatrix(int n_, const _Edges<T> &edges_) : std::vector<_pairs<T>>(n_, _pairs<T>(n_)), edges(edges_) { for (auto &&e : edges) { (*this)[e.from][e.to] = _pair<T>(e.cost, e.id); if constexpr (!is_directed) (*this)[e.to][e.from] = _pair<T>(e.cost, e.id); } } template <class IStream, is_istream_t<IStream> * = nullptr> AdjacencyMatrix &input(IStream &is, bool oneindexed = false) { for (int i = 0; i < num_edges(); i++) { int u, v; T w{}; is >> u >> v; if constexpr (!std::is_same_v<T, empty>) is >> w; if (oneindexed) --u, --v; _add_edge<true>(u, v, w, i); } return *this; } _Edges<T> edges; int num_vertices() const { return (int)this->size(); } int num_edges() const { return (int)edges.size(); } void edge_clear() { for (auto &&e : edges) { (*this)[e.from][e.to] = _pair<T>(e.cost, e.id); if constexpr (!is_directed) (*this)[e.to][e.from] = _pair<T>(e.cost, e.id); } edges.clear(); } void add_edge(int from, int to, T cost = T{}) { _add_edge<false>(from, to, cost, num_edges()); } private: template <bool update = false> void _add_edge(int from, int to, T cost, int id) { (*this)[from][to] = _pair<T>(cost, id); if constexpr (!is_directed) (*this)[to][from] = _pair<T>(cost, id); if constexpr (update) edges[id] = _Edge<T>(to, cost, from, id); else edges.emplace_back(to, cost, from, id); } }; template <class G> G reverse(const G &g) { G res(g.num_vertices()); for (auto &&e : g.edges) res.add_edge(e.to, e.from, e.cost); return res; } template <class T, class IStream, is_istream_t<IStream> * = nullptr> _Edges<T> &input(_Edges<T> &edges, bool is_one_indexed, IStream &is) { for (int i = 0; i < (int)edges.size(); i++) { int u, v; T w{}; is >> u >> v; if (is_one_indexed) --u, --v; if constexpr (!std::is_same_v<T, empty>) is >> w; edges[i] = _Edge<T>(v, w, u, i); } return edges; } } // namespace graph template <typename T> using WAdjList = graph::AdjacencyList<T, false>; template <typename T> using DWAdjList = graph::AdjacencyList<T, true>; using AdjList = graph::AdjacencyList<graph::empty, false>; using DAdjList = graph::AdjacencyList<graph::empty, true>; template <typename T> using WAdjMat = graph::AdjacencyMatrix<T, false>; template <typename T> using DWAdjMat = graph::AdjacencyMatrix<T, true>; using AdjMat = graph::AdjacencyMatrix<graph::empty, false>; using DAdjMat = graph::AdjacencyMatrix<graph::empty, true>; template <typename T> using WEdge = graph::_Edge<T>; template <typename T> using WEdges = graph::_Edges<T>; using Edge = graph::_Edge<graph::empty>; using Edges = graph::_Edges<graph::empty>; using graph::input; using graph::reverse; } // namespace kk2 #endif // GRAPH_GRAPH_TEMPLATE_HPP // #include <kk2/graph/graph.hpp> #ifndef BIT_BITCOUNT_HPP #define BIT_BITCOUNT_HPP 1 #include <cassert> // #include "../type_traits/type_traits.hpp" namespace kk2 { template <typename T> int ctz(T x) { static_assert(is_integral<T>::value); assert(x != T(0)); if constexpr (sizeof(T) <= 4) { return __builtin_ctz(x); } else if constexpr (sizeof(T) <= 8) { return __builtin_ctzll(x); } else { if (x & 0xffffffffffffffff) return __builtin_ctzll((unsigned long long)(x & 0xffffffffffffffff)); return 64 + __builtin_ctzll((unsigned long long)(x >> 64)); } } template <typename T> int clz(T x) { static_assert(is_integral<T>::value); assert(x != T(0)); if constexpr (sizeof(T) <= 4) { return __builtin_clz(x); } else if constexpr (sizeof(T) <= 8) { return __builtin_clzll(x); } else { if (x >> 64) return __builtin_clzll((unsigned long long)(x >> 64)); return 64 + __builtin_clzll((unsigned long long)(x & 0xffffffffffffffff)); } } template <typename T> int popcount(T x) { static_assert(is_integral<T>::value); if constexpr (sizeof(T) <= 4) { return __builtin_popcount(x); } else if constexpr (sizeof(T) <= 8) { return __builtin_popcountll(x); } else { return __builtin_popcountll((unsigned long long)(x >> 64)) + __builtin_popcountll((unsigned long long)(x & 0xffffffffffffffff)); } } }; // namespace kk2 #endif // BIT_BITCOUNT_HPP // #include <kk2/bit/bitcount.hpp> #ifndef TEMPLATE #define TEMPLATE 1 // #pragma GCC optimize("O3,unroll-loops") // #include <bits/stdc++.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <iomanip> #include <iostream> #include <iterator> #include <limits> #include <map> #include <numeric> #include <optional> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> // #include "../type_traits/type_traits.hpp" #ifndef TEMPLATE_FASTIO_HPP #define TEMPLATE_FASTIO_HPP 1 #include <cctype> #include <cstdint> #include <cstdio> #include <fstream> #include <iostream> #include <string> // #include "../type_traits/type_traits.hpp" namespace kk2 { namespace fastio { #define INPUT_FILE "in.txt" #define OUTPUT_FILE "out.txt" struct Scanner : type_traits::istream_tag { private: static constexpr size_t INPUT_BUF = 1 << 17; size_t pos = 0, end = 0; static char buf[INPUT_BUF]; FILE *fp; public: Scanner() : fp(stdin) {} Scanner(const char *file) : fp(fopen(file, "r")) {} ~Scanner() { if (fp != stdin) fclose(fp); } char now() { if (pos == end) { while (!(end = fread(buf, 1, INPUT_BUF, fp))) {} if (end != INPUT_BUF) buf[end] = '\0'; pos = 0; } return buf[pos]; } void skip_space() { while (isspace(now())) ++pos; } template <class T, is_unsigned_t<T> * = nullptr> T next_unsigned_integral() { skip_space(); T res{}; while (isdigit(now())) { res = res * 10 + (now() - '0'); ++pos; } return res; } template <class T, is_signed_t<T> * = nullptr> T next_signed_integral() { skip_space(); if (now() == '-') { ++pos; return T(-next_unsigned_integral<typename to_unsigned<T>::type>()); } else return (T)next_unsigned_integral<typename to_unsigned<T>::type>(); } char next_char() { skip_space(); auto res = now(); ++pos; return res; } std::string next_string() { skip_space(); std::string res; while (true) { char c = now(); if (isspace(c) or c == '\0') break; res.push_back(now()); ++pos; } return res; } template <class T, is_unsigned_t<T> * = nullptr> Scanner &operator>>(T &x) { x = next_unsigned_integral<T>(); return *this; } template <class T, is_signed_t<T> * = nullptr> Scanner &operator>>(T &x) { x = next_signed_integral<T>(); return *this; } Scanner &operator>>(char &x) { x = next_char(); return *this; } Scanner &operator>>(std::string &x) { x = next_string(); return *this; } }; struct endl_struct_t {}; struct Printer : type_traits::ostream_tag { private: static char helper[10000][5]; static char leading_zero[10000][5]; constexpr static size_t OUTPUT_BUF = 1 << 17; static char buf[OUTPUT_BUF]; size_t pos = 0; FILE *fp; template <class T> static constexpr void div_mod(T &a, T &b, T mod) { a = b / mod; b -= a * mod; } static void init() { buf[0] = '\0'; for (size_t i = 0; i < 10000; ++i) { leading_zero[i][0] = i / 1000 + '0'; leading_zero[i][1] = i / 100 % 10 + '0'; leading_zero[i][2] = i / 10 % 10 + '0'; leading_zero[i][3] = i % 10 + '0'; leading_zero[i][4] = '\0'; size_t j = 0; if (i >= 1000) helper[i][j++] = i / 1000 + '0'; if (i >= 100) helper[i][j++] = i / 100 % 10 + '0'; if (i >= 10) helper[i][j++] = i / 10 % 10 + '0'; helper[i][j++] = i % 10 + '0'; helper[i][j] = '\0'; } } public: Printer() : fp(stdout) { init(); } Printer(const char *file) : fp(fopen(file, "w")) { init(); } ~Printer() { write(); if (fp != stdout) fclose(fp); } void write() { fwrite(buf, 1, pos, fp); pos = 0; } void flush() { write(); fflush(fp); } void put_char(char c) { if (pos == OUTPUT_BUF) write(); buf[pos++] = c; } void put_cstr(const char *s) { while (*s) put_char(*(s++)); } void put_u32(uint32_t x) { uint32_t y; if (x >= 100000000) { // 10^8 div_mod<uint32_t>(y, x, 100000000); put_cstr(helper[y]); div_mod<uint32_t>(y, x, 10000); put_cstr(leading_zero[y]); put_cstr(leading_zero[x]); } else if (x >= 10000) { // 10^4 div_mod<uint32_t>(y, x, 10000); put_cstr(helper[y]); put_cstr(leading_zero[x]); } else put_cstr(helper[x]); } void put_i32(int32_t x) { if (x < 0) { put_char('-'); put_u32(-x); } else put_u32(x); } void put_u64(uint64_t x) { uint64_t y; if (x >= 1000000000000ull) { // 10^12 div_mod<uint64_t>(y, x, 1000000000000ull); put_u32(y); div_mod<uint64_t>(y, x, 100000000ull); put_cstr(leading_zero[y]); div_mod<uint64_t>(y, x, 10000ull); put_cstr(leading_zero[y]); put_cstr(leading_zero[x]); } else if (x >= 10000ull) { // 10^4 div_mod<uint64_t>(y, x, 10000ull); put_u32(y); put_cstr(leading_zero[x]); } else put_cstr(helper[x]); } void put_i64(int64_t x) { if (x < 0) { put_char('-'); put_u64(-x); } else put_u64(x); } void put_u128(__uint128_t x) { constexpr static __uint128_t pow10_10 = 10000000000ull; constexpr static __uint128_t pow10_20 = pow10_10 * pow10_10; __uint128_t y; if (x >= pow10_20) { // 10^20 div_mod<__uint128_t>(y, x, pow10_20); put_u64(uint64_t(y)); div_mod<__uint128_t>(y, x, __uint128_t(10000000000000000ull)); put_cstr(leading_zero[y]); div_mod<__uint128_t>(y, x, __uint128_t(1000000000000ull)); put_cstr(leading_zero[y]); div_mod<__uint128_t>(y, x, __uint128_t(100000000ull)); put_cstr(leading_zero[y]); div_mod<__uint128_t>(y, x, __uint128_t(10000ull)); put_cstr(leading_zero[y]); put_cstr(leading_zero[x]); } else if (x >= __uint128_t(10000)) { // 10^4 div_mod<__uint128_t>(y, x, __uint128_t(10000)); put_u64(uint64_t(y)); put_cstr(leading_zero[x]); } else put_cstr(helper[x]); } void put_i128(__int128_t x) { if (x < 0) { put_char('-'); put_u128(-x); } else put_u128(x); } template <class T, is_unsigned_t<T> * = nullptr> Printer &operator<<(T x) { if constexpr (sizeof(T) <= 4) put_u32(x); else if constexpr (sizeof(T) <= 8) put_u64(x); else put_u128(x); return *this; } template <class T, is_signed_t<T> * = nullptr> Printer &operator<<(T x) { if constexpr (sizeof(T) <= 4) put_i32(x); else if constexpr (sizeof(T) <= 8) put_i64(x); else put_i128(x); return *this; } Printer &operator<<(char x) { put_char(x); return *this; } Printer &operator<<(const std::string &x) { for (char c : x) put_char(c); return *this; } Printer &operator<<(const char *x) { put_cstr(x); return *this; } // std::cout << std::endl; は関数ポインタを渡しているらしい Printer &operator<<(endl_struct_t) { put_char('\n'); flush(); return *this; } }; char Scanner::buf[Scanner::INPUT_BUF]; char Printer::buf[Printer::OUTPUT_BUF]; char Printer::helper[10000][5]; char Printer::leading_zero[10000][5]; } // namespace fastio #if defined(INTERACTIVE) || defined(USE_STDIO) auto &kin = std::cin; auto &kout = std::cout; auto (*kendl)(std::ostream &) = std::endl<char, std::char_traits<char>>; #elif defined(KK2) fastio::Scanner kin(INPUT_FILE); fastio::Printer kout(OUTPUT_FILE); fastio::endl_struct_t kendl; #else fastio::Scanner kin; fastio::Printer kout; fastio::endl_struct_t kendl; #endif } // namespace kk2 #endif // TEMPLATE_FASTIO_HPP // #include "fastio.hpp" using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; using pi = std::pair<int, int>; using pl = std::pair<i64, i64>; using pil = std::pair<int, i64>; using pli = std::pair<i64, int>; template <class T> using vc = std::vector<T>; template <class T> using vvc = std::vector<vc<T>>; template <class T> using vvvc = std::vector<vvc<T>>; template <class T> using vvvvc = std::vector<vvvc<T>>; template <class T> using pq = std::priority_queue<T>; template <class T> using pqi = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = (1 << 30) - 123; template <> constexpr i64 infty<i64> = (1ll << 62) - (1ll << 31); template <> constexpr i128 infty<i128> = (i128(1) << 126) - (i128(1) << 63); template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<i64>; template <> constexpr u128 infty<u128> = infty<i128>; template <> constexpr double infty<double> = infty<i64>; template <> constexpr long double infty<long double> = infty<i64>; constexpr int mod = 998244353; constexpr int modu = 1e9 + 7; constexpr long double PI = 3.14159265358979323846; namespace kk2 { template <class T, class... Sizes> auto make_vector(int first, Sizes... sizes) { if constexpr (sizeof...(sizes) == 0) { return std::vector<T>(first); } else { return std::vector<decltype(make_vector(sizes...))>(first, make_vector(sizes...)); } } template <class T, class U> void fill_all(std::vector<T> &v, const U &x) { std::fill(std::begin(v), std::end(v), T(x)); } template <class T, class U> void fill_all(std::vector<std::vector<T>> &v, const U &x) { for (auto &u : v) fill_all(u, x); } } // namespace kk2 template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } #define rep1(a) for (i64 _ = 0; _ < (i64)(a); ++_) #define rep2(i, a) for (i64 i = 0; i < (i64)(a); ++i) #define rep3(i, a, b) for (i64 i = (a); i < (i64)(b); ++i) #define repi2(i, a) for (i64 i = (a) - 1; i >= 0; --i) #define repi3(i, a, b) for (i64 i = (a) - 1; i >= (i64)(b); --i) #define overload3(a, b, c, d, ...) d #define rep(...) overload3(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__) #define repi(...) overload3(__VA_ARGS__, repi3, repi2, rep1)(__VA_ARGS__) #define fi first #define se second #define all(p) std::begin(p), std::end(p) using kk2::kendl; using kk2::kin; using kk2::kout; struct IoSetUp { IoSetUp() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } } iosetup; template <class OStream, class T, class U, kk2::is_ostream_t<OStream> * = nullptr> OStream &operator<<(OStream &os, const std::pair<T, U> &p) { os << p.first << ' ' << p.second; return os; } template <class IStream, class T, class U, kk2::is_istream_t<IStream> * = nullptr> IStream &operator>>(IStream &is, std::pair<T, U> &p) { is >> p.first >> p.second; return is; } template <class OStream, class T, kk2::is_ostream_t<OStream> * = nullptr> OStream &operator<<(OStream &os, const std::vector<T> &v) { for (int i = 0; i < (int)v.size(); i++) { os << v[i] << (i + 1 == (int)v.size() ? "" : " "); } return os; } template <class IStream, class T, kk2::is_istream_t<IStream> * = nullptr> IStream &operator>>(IStream &is, std::vector<T> &v) { for (auto &x : v) is >> x; return is; } void Yes(bool b = 1) { kout << (b ? "Yes\n" : "No\n"); } void No(bool b = 1) { kout << (b ? "No\n" : "Yes\n"); } void YES(bool b = 1) { kout << (b ? "YES\n" : "NO\n"); } void NO(bool b = 1) { kout << (b ? "NO\n" : "YES\n"); } void yes(bool b = 1) { kout << (b ? "yes\n" : "no\n"); } void no(bool b = 1) { kout << (b ? "no\n" : "yes\n"); } #endif // TEMPLATE // #include <kk2/template/template.hpp> using namespace std; void solve() { int n, m, k; kin >> n >> m >> k; vc<int> x(k); kin >> x; for (auto& e : x) --e; kk2::AdjMat g(n, m); g.input(kin, true); { vvvc<bool> can_visited(k, vvc<bool>(n, vc<bool>(n))); rep (i, k) { vvc<bool> dist(1 << n, vc<bool>(n)); dist[1 << x[i]][x[i]] = true; queue<pi> q; q.emplace(1 << x[i], x[i]); while (!q.empty()) { auto [s, u] = q.front(); q.pop(); rep (v, n) { if (~s >> v & 1 and g[u][v]) { if (!dist[s ^ (1 << v)][v]) { dist[s ^ (1 << v)][v] = true; q.emplace(s ^ (1 << v), v); } } } } rep (bit, 1 << n) { rep (v, n) { if (dist[bit][v]) { can_visited[i][v][kk2::popcount(bit) - 1] = true; } } } } rep (collect, n) { auto ok = [&]() -> bool { rep (step, n) { auto ok2 = [&]() -> bool { rep (i, k) { if (!can_visited[i][collect][step]) return false; } return true; }; if (ok2()) return true; } return false; }; if (ok()) { Yes(); return; } } No(); } } int main() { int t = 1; // kin >> t; rep (t) solve(); return 0; } // converted!!