結果

問題 No.2957 Combo Deck Builder
ユーザー ecottea
提出日時 2024-10-30 18:23:19
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 9,898 bytes
コンパイル時間 17,431 ms
コンパイル使用メモリ 335,260 KB
最終ジャッジ日時 2025-02-25 01:50:03
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 36 TLE * 2
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9e18int -2^31 2^31 = 2e9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // mod
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<1000000009>;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(...)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE MLE
#endif
//max,min
/* verify : https://codeforces.com/contest/2001/problem/D */
using T043 = int;
using S043 = pair<T043, T043>;
S043 op043(S043 a, S043 b) { return { max(a.first, b.first), min(a.second, b.second) }; }
S043 e043() { return { -T043(INFL), T043(INFL) }; }
#define MaxMin_monoid S043, op043, e043
//
/*
* Fibonacci_search<S>(S w) : O(log w)
* w
*
* pST search_max<T>(T l, T r, FUNC f) : O(log(r - l))
* (l..r) f f(i) {i, f(i)}
*
* pST search_min<T>(T l, T r, FUNC f) : O(log(r - l))
* (l..r) f f(i) {i, f(i)}
*/
template <class S>
class Fibonacci_search {
int n;
vector<S> fib;
template <class T, class FUNC>
pair<S, T> search(S left, S right, const FUNC& f, T sgn) const {
Assert(right - left >= 2);
// 1 f(i)
if (right - left == 2) return make_pair(left + 1, f(left + 1));
//
auto F = [&](S x) {
if (x >= right) return -T(INFL) - T(x - right); //
else return sgn * f(x);
};
// l, m1, m2, r φ : 1 : φ
int i = n;
S l = left;
S r = l + fib[i];
S m1 = l + fib[i - 2];
S m2 = l + fib[i - 1];
i -= 3;
//
T v1 = F(m1);
T v2 = F(m2);
//
while (i > 0) {
//
if (v1 > v2) {
//
r = m2;
//
m2 = m1;
v2 = v1;
//
m1 = l + fib[i];
v1 = F(m1);
}
//
else {
//
l = m1;
//
m1 = m2;
v1 = v2;
//
m2 = r - fib[i];
v2 = F(m2);
}
i--;
}
//
return (v1 > v2) ? make_pair(m1, sgn * v1) : make_pair(m2, sgn * v2);
}
public:
Fibonacci_search(S w) : n(1), fib({ S(1), S(1) }) {
// verify : https://yukicoder.me/problems/no/2627
//
while (fib[n] < w) {
fib.push_back(fib[n] + fib[n - 1]);
n++;
}
}
// (l..r) f f(i) {i, f(i)}
template <class T, class FUNC>
pair<S, T> search_max(S l, S r, const FUNC& f) const {
// verify : https://atcoder.jp/contests/typical90/tasks/typical90_ba
return search<T, FUNC>(l, r, f, 1);
}
// (l..r) f f(i) {i, f(i)}
template <class T, class FUNC>
pair<S, T> search_min(S l, S r, const FUNC& f) const {
// verify : https://atcoder.jp/contests/abc330/tasks/abc330_c
return search<T, FUNC>(l, r, f, -1);
}
/* f
auto f = [&](ll x) {
return x;
};
*/
};
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n;
cin >> n;
vi c(n); vl x(n), y(n);
rep(i, n) cin >> c[i] >> x[i] >> y[i];
vector<tuple<ll, int, ll, ll>> dcxy(n);
rep(i, n) dcxy[i] = { abs(x[i] - y[i]), c[i], x[i], y[i] };
sort(all(dcxy), greater<tuple<ll, int, ll, ll>>());
auto f = [&](int TH) {
dump("=========================== TH", TH, "===============================");
ll sc = 0;
vector<S043> ini(n);
rep(i, n) ini[i] = { i, i };
segtree<MaxMin_monoid> seg(ini);
dump(seg);
for (auto [d, c, x, y] : dcxy) {
dump("------ d, c, x, y:", d, c, x, y, "-----------");
if (x > y) {
auto [pM, pm] = seg.prod(max(c, TH), n);
if (pm > n) {
sc += y;
continue;
}
seg.set(pm, e043());
sc += x;
}
else {
auto [pM, pm] = seg.prod(0, min(c, TH));
if (pM < 0) {
sc += x;
continue;
}
seg.set(pM, e043());
sc += y;
}
dump(seg);
}
dump(sc);
return sc;
};
Fibonacci_search F(n + 2);
auto [TH, fTH] = F.search_max<ll>(-1, n + 1, f);
EXIT(fTH);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0