結果

問題 No.992 最長増加部分列の数え上げ
ユーザー T101010101T101010101
提出日時 2024-11-09 19:55:27
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 292 ms / 2,000 ms
コード長 45,587 bytes
コンパイル時間 7,409 ms
コンパイル使用メモリ 321,992 KB
実行使用メモリ 69,384 KB
最終ジャッジ日時 2024-11-09 19:55:44
合計ジャッジ時間 16,069 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 1 ms
5,248 KB
testcase_04 AC 97 ms
29,464 KB
testcase_05 AC 66 ms
21,804 KB
testcase_06 AC 118 ms
35,392 KB
testcase_07 AC 90 ms
26,380 KB
testcase_08 AC 41 ms
15,360 KB
testcase_09 AC 88 ms
27,164 KB
testcase_10 AC 119 ms
35,284 KB
testcase_11 AC 151 ms
43,032 KB
testcase_12 AC 28 ms
11,392 KB
testcase_13 AC 81 ms
25,336 KB
testcase_14 AC 98 ms
25,720 KB
testcase_15 AC 31 ms
11,648 KB
testcase_16 AC 231 ms
62,020 KB
testcase_17 AC 44 ms
15,360 KB
testcase_18 AC 82 ms
24,936 KB
testcase_19 AC 146 ms
42,376 KB
testcase_20 AC 269 ms
68,868 KB
testcase_21 AC 262 ms
68,484 KB
testcase_22 AC 292 ms
69,124 KB
testcase_23 AC 267 ms
68,996 KB
testcase_24 AC 259 ms
68,896 KB
testcase_25 AC 275 ms
69,252 KB
testcase_26 AC 289 ms
68,776 KB
testcase_27 AC 263 ms
68,868 KB
testcase_28 AC 286 ms
69,384 KB
testcase_29 AC 269 ms
68,868 KB
testcase_30 AC 141 ms
58,884 KB
testcase_31 AC 169 ms
58,756 KB
testcase_32 AC 136 ms
58,808 KB
testcase_33 AC 144 ms
58,884 KB
testcase_34 AC 134 ms
58,760 KB
testcase_35 AC 144 ms
58,876 KB
testcase_36 AC 138 ms
59,012 KB
testcase_37 AC 140 ms
58,884 KB
testcase_38 AC 201 ms
58,992 KB
testcase_39 AC 161 ms
58,880 KB
testcase_40 AC 146 ms
59,652 KB
testcase_41 AC 141 ms
60,292 KB
testcase_42 AC 145 ms
59,496 KB
testcase_43 AC 143 ms
60,292 KB
testcase_44 AC 146 ms
59,396 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma region Macros
 
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,fma,mmx,abm,bmi,bmi2,popcnt,lzcnt")
#pragma GCC target("avx2") // CF, CodeChef, HOJ ではコメントアウト
 
#include <bits/extc++.h>
// #include <atcoder/all>
// using namespace atcoder;
using namespace std;
using namespace __gnu_pbds;
 
// #include <boost/multiprecision/cpp_dec_float.hpp>
// #include <boost/multiprecision/cpp_int.hpp>
// namespace mp = boost::multiprecision;
// using Bint = mp::cpp_int;
// using Bdouble = mp::number<mp::cpp_dec_float<256>>;
// Bdouble Beps = 0.00000000000000000000000000000001; // 1e-32
// const bool equals(Bdouble a, Bdouble b) { return mp::fabs(a - b) < Beps; }

#define pb emplace_back
// #define int ll
#define endl '\n'
 
// #define sqrt __builtin_sqrtl
// #define cbrt __builtin_cbrtl
// #define hypot __builtin_hypotl
 
using ll = long long;
using ld = long double;
const ld PI = acosl(-1);
const int INF = 1 << 30;
const ll INFL = 1LL << 61;
// const int MOD = 998244353;
const int MOD = 1000000007;

const ld EPS = 1e-10;
const bool equals(ld a, ld b) { return fabs((a) - (b)) < EPS; }
 
const vector<int> dx = {0, 1, 0, -1, 1, 1, -1, -1, 0}; // → ↓ ← ↑ ↘ ↙ ↖ ↗ 自
const vector<int> dy = {1, 0, -1, 0, 1, -1, -1, 1, 0};
 
#define EC int
struct Edge {
    int from, to;
    EC cost;
    Edge() {}
    // Edge() : from(-1), to(-1), cost(-1) {}
    Edge(int to, EC cost) : to(to), cost(cost) {}
    Edge(int from, int to, EC cost) : from(from), to(to), cost(cost) {}
    bool operator ==(const Edge &e) {
        return this->from == e.from && this->to == e.to && this->cost == e.cost;
    }
    bool operator !=(const Edge &e) {
        return this->from != e.from or this->to != e.to or this->cost != e.cost;
    }
    bool operator <(const Edge &e) { return this->cost < e.cost; }
    bool operator >(const Edge &e) { return this->cost > e.cost; }
};
 
chrono::system_clock::time_point start;
__attribute__((constructor))
void constructor() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(10);
    start = chrono::system_clock::now();
}
 
random_device seed_gen;
mt19937_64 rng(seed_gen());
uniform_int_distribution<int> dist_x(0, 1e9);
struct RNG {
    unsigned Int() {
        return dist_x(rng);
    }
    unsigned Int(unsigned l, unsigned r) {
        return dist_x(rng) % (r - l + 1) + l;
    }
    ld Double() {
        return ld(dist_x(rng)) / 1e9;
    }
} rnd;

namespace bit_function {
    using i64 = ll;
    // using i64 = uint64_t;
    // bit演算, x==0の場合は例外処理した方がよさそう. 区間は [l, r)
    i64 lrmask(int l, int r) { return (1LL << r) - (1LL << l); }
    i64 sub_bit(i64 x, int l, int r) { i64 b = x & ((1LL << r) - (1LL << l)); return b >> l; } // r溢れ可
    i64 bit_width(i64 x) { return 64 - __builtin_clzll(x) + (x == 0); }
    
    i64 popcount(i64 x) { return __builtin_popcountll(x); }
    i64 popcount(i64 x, int l, int r) { return __builtin_popcountll(sub_bit(x, l, r)); }
    i64 unpopcount(i64 x) { return bit_width(x) - __builtin_popcountll(x); } // 最上位bitより下のみ
    i64 unpopcount(i64 x, int l, int r) { return r - l - __builtin_popcountll(sub_bit(x, l, r)); } // 最上位bitより上も含まれうる
    bool is_pow2(i64 x) { return __builtin_popcountll(x) == 1; } // xが負のときは常にfalse
    bool is_pow4(i64 x) { return __builtin_popcountll(x) == 1 && __builtin_ctz(x) % 2 == 0; }
    //bool is_pow4(ll x) { return __builtin_popcountll(x) == 1 && (x&0x55555555); }
    
    int top_bit(i64 x) { return 63 - __builtin_clzll(x);} // 2^kの位 (x > 0)
    int bot_bit(i64 x) { return __builtin_ctzll(x);} // 2^kの位 (x > 0)
    int next_bit(i64 x, int k) { // upper_bound
        x >>= (k + 1);
        int pos = k + 1;
        while (x > 0) {
            if (x & 1) return pos;
            x >>= 1;
            pos++;
        }
        return -1;
    }
    int prev_bit(i64 x, int k) {
        // k = min(k, bit_width(x)); ?
        int pos = 0;
        while (x > 0 && pos < k) {
            if (x & 1) {
                if (pos < k) return pos;
            }
            x >>= 1;
            pos++;
        }
        return -1;
    }
    int kth_bit(i64 x, int k) { // kは1-indexed
        int pos = 0, cnt = 0;
        while (x > 0) {
            if (x & 1) {
                cnt++;
                if (cnt == k) return pos;
            }
            x >>= 1;
            pos++;
        }
        return -1;
    }
    i64 msb(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // mask
    i64 lsb(i64 x) { return (x & -x); } // mask
    
    int countl_zero(i64 x) { return __builtin_clzll(x); }
    int countl_one(i64 x) { // countl_oneと定義が異なるので注意
        i64 ret = 0, k = 63 - __builtin_clzll(x);
        while (k != -1 && (x & (1LL << k))) { k--; ret++; }
        return ret;
    }
    int countr_zero(i64 x) { return __builtin_ctzll(x); } // x=0のとき64
    int countr_one(i64 x) { int ret = 0; while (x & 1) { x >>= 1; ret++; } return ret; }
    // int countr_one(ll x) { return __builtin_popcount(x ^ (x & -~x));

    i64 l_one(i64 x) { // 最上位で連なってる1のmask
        if (x == 0) return 0;
        i64 ret = 0, k = 63 - __builtin_clzll(x);
        while (k != -1 && (x & (1LL << k))) { ret += 1LL << k; k--; }
        return ret;
    }
    
    int floor_log2(i64 x) { return 63 - __builtin_clzll(x); } // top_bit
    int ceil_log2(i64 x) { return 64 - __builtin_clzll(x - 1); }
    i64 bit_floor(i64 x) { if (x == 0) return 0; return 1LL << (63 - __builtin_clzll(x)); } // msb
    i64 bit_ceil(i64 x) { if (x == 0) return 0; return 1LL << (64 - __builtin_clzll(x - 1)); }
    
    i64 rotl(i64 x, int k) { // 有効bit内でrotate. オーバーフロー注意
        i64 w = bit_width(x); k %= w;
        return ((x << k) | (x >> (w - k))) & ((1LL << w) - 1);
    }
    // i64 rotl(i64 x, i64 l, i64 m, i64 r) {}
    i64 rotr(i64 x, int k) {
        i64 w = bit_width(x); k %= w;
        return ((x >> k) | (x << (w - k))) & ((1LL << w) - 1);
    }
    // i64 rotr(i64 x, i64 l, i64 m, i64 r) {}
    i64 bit_reverse(i64 x) { // 有効bit内で左右反転
        i64 r = 0, w = bit_width(x);
        for (i64 i = 0; i < w; i++) r |= ((x >> i) & 1) << (w - i - 1);
        return r;
    }
    // i64 bit_reverse(i64 x, int l, int r) {}
    
    bool is_palindrome(i64 x) { return x == bit_reverse(x); }
    bool is_palindrome(i64 x, int l, int r) { i64 b = sub_bit(x, l, r); return b == bit_reverse(b); }
    i64 concat(i64 a, i64 b) { return (a << bit_width(b)) | b; } // オーバーフロー注意
    i64 erase(i64 x, int l, int r) { return x >> r << l | x & ((1LL << l) - 1); } // [l, r) をカット
    
    i64 hamming(i64 a, i64 b) { return __builtin_popcountll(a ^ b); }
    i64 hamming(i64 a, i64 b, int l, int r) { return __builtin_popcountll(sub_bit(a, l, r) ^ sub_bit(b, l, r)); }
    i64 compcount(i64 x) { return (__builtin_popcountll(x ^ (x >> 1)) + (x & 1)) / 2; }
    i64 compcount2(i64 x) { return compcount(x & (x >> 1)); } // 長さ2以上の連結成分の個数
    i64 adjacount(i64 x) { return __builtin_popcountll(x & (x >> 1)); } // 隣接する1のペアの個数
    
    i64 next_combination(i64 x) {
        i64 t = x | (x - 1); return (t + 1) | (((~t & -~t) - 1) >> (__builtin_ctzll(x) + 1));
    }
} using namespace bit_function;

namespace util_function {
    namespace Std = std;
    __int128_t POW(__int128_t x, int n) {
        __int128_t ret = 1;
        assert(n >= 0);
        if (x == 1 or n == 0) ret = 1;
        else if (x == -1 && n % 2 == 0) ret = 1; 
        else if (x == -1) ret = -1; 
        else if (n % 2 == 0) {
            // assert(x < INFL);
            ret = POW(x * x, n / 2);
        } else {
            // assert(x < INFL);
            ret = x * POW(x, n - 1);
        }
        return ret;
    }
    int per(int x, int y) { // x = qy + r (0 <= r < y) を満たすq
        assert(y != 0);
        if (x >= 0 && y > 0) return x / y;
        if (x >= 0 && y < 0) return x / y - (x % y < 0);
        if (x < 0 && y < 0) return x / y + (x % y < 0);
        return x / y - (x % y < 0); //  (x < 0 && y > 0) 
    }
    int mod(int x, int y) { // x = qy + r (0 <= r < y) を満たすr
        assert(y != 0);
        return x - y * per(x, y);
    } // https://yukicoder.me/problems/no/2781
    int floor(int x, int y) { // (ld)x / y 以下の最大の整数
        assert(y != 0);
        if (y < 0) x = -x, y = -y;
        return x >= 0 ? x / y : (x + 1) / y - 1;
    }
    int ceil(int x, int y) { // (ld)x / y 以上の最小の整数
        assert(y != 0);
        if (y < 0) x = -x, y = -y;
        return x > 0 ? (x - 1) / y + 1 : x / y;
    }
    int round(int x, int y) { // (ld)x / y を小数第1位について四捨五入
        assert(y != 0);
        return (x * 2 + y) / (y * 2);
    }
    int round(int x, int y, int k) { // (ld)x / y を10^kの位に関して四捨五入
        assert(y != 0 && k >= 0);
        if (k == 0) return (x * 2 + y) / (y * 2);
        x /= y * POW(10, k - 1);
        if (x % 10 >= 5) return (x + 10 - x % 10) * POW(10, k - 1);
        return x * POW(10, k - 1);
    }
    int round2(int x, int y) { // 五捨五超入 // 未verify
        assert(y != 0);
        if (y < 0) y = -y, x = -x;
        int z = x / y;
        if ((z * 2 + 1) * y <= y * 2) z++;
        return z;
    }
    ld round(ld x, int k) { // xを10^kの位に関して四捨五入.
        // x += EPS;
        ld d = pow(10, -k);
        return Std::round(x * d) / d;
    }
    ld floor(ld x, int k) { // xを10^kの位に関してflooring
        // x += EPS;
        ld d = pow(10, -k);
        return Std::floor(x * d) / d; // 未verify
    }
    ld ceil(ld x, int k) { // xを10^kの位に関してceiling
        // x -= EPS;
        ld d = pow(10, -k);
        return Std::ceil(x * d) / d; // 未verify
    }
    // int kth(int x, int y, int k) { // x / yの10^kの位の桁
    // }
    int floor(ld x, ld y) { // 誤差対策TODO
        assert(!equals(y, 0));
        return Std::floor(x / y);
        // floor(x) = ceil(x - 1) という話も
    }
    int ceil(ld x, ld y) { // 誤差対策TODO // ceil(p/q) = -floor(-(p/q))らしい
        assert(!equals(y, 0));
        return Std::ceil(x / y);
        // ceil(x) = floor(x + 1)
    }
    int perl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす q
        // 未verify. 誤差対策TODO. EPS外してもいいかも。
        assert(!equals(y, 0));
        if (x >= 0 && y > 0) return Std::floor(x / y)+EPS;
        if (x >= 0 && y < 0) return -Std::floor(x / fabs(y));
        if (x < 0 && y < 0) return Std::floor(x / y) + (x - Std::floor(x/y)*y < -EPS);
        return Std::floor(x / y) - (x - Std::floor(x/y)*y < -EPS); //  (x < 0 && y > 0) 
    }
    ld modl(ld x, ld y) { // x = qy + r (0 <= r < y, qは整数) を満たす r
        // 未verify. 誤差対策TODO. -0.0が返りうる。
        assert(!equals(y, 0));
        if (x >= 0) return x - fabs(y)*fabs(per(x, y));
        return x - fabs(y)*floor(x, fabs(y));
    }
    int seisuu(ld x) { return (int)x; } // 整数部分. 誤差対策TODO
    int modf(ld x) {
        if (x < 0) return ceill(x);
        else return floorl(x);
    }
    // 正なら+EPS, 負なら-EPSしてから、文字列に直して小数点以下を捨てる?
    int seisuu(int x, int y) {
        assert(y != 0);
        return x / y;
    }
    int seisuu(ld x, ld y) { // 誤差対策TODO
        assert(!equals(y, 0));
        return (int)(x / y);
    }

    int floor_log(int base, int x) {
        assert(base >= 2);
        int ret = 0, now = 1;
        while (now <= x) {
            now *= base;
            if (now <= x) ret++;
        }
        return ret;
    }
    int ceil_log(int base, int x) {
        assert(base >= 2);
        int ret = 0, now = 1;
        while (now < x) {
            now *= base;
            ret++;
        }
        return ret;
    }

    template <class T> pair<T, T> max(const pair<T, T> &a, const pair<T, T> &b) {
        if (a.first > b.first or a.first == b.first && a.second > b.second) return a;
        return b;
    }
    template <class T> pair<T, T> min(const pair<T, T> &a, const pair<T, T> &b) {
        if (a.first < b.first or a.first == b.first && a.second < b.second) return a;
        return b;
    }
    
    template <class T> bool chmax(T &a, const T &b) {
        if (a < b) { a = b; return true; } return false;
    }
    template <class T> bool chmin(T &a, const T &b) {
        if (a > b) { a = b; return true; } return false;
    }
    template <class T> bool chmax(pair<T, T> &a, const pair<T, T> &b) {
        if (a.first < b.first or a.first == b.first && a.second < b.second) { a = b; return true; }
        return false;
    }
    template <class T> bool chmin(pair<T, T> &a, const pair<T, T> &b) {
        if (a.first > b.first or a.first == b.first && a.second > b.second) { a = b; return true; }
        return false;
    }
    template <class T> T mid(T a, T b, T c) { // 誤差対策TODO
        return a + b + c - Std::max({a, b, c}) - Std::min({a, b, c});
    }
    template <typename T, typename... Args>
    void Sort(T& a, T& b, T& c, Args&... args) {
        vector<T> vec = {a, b, c, args...};
        sort(vec.begin(), vec.end());
        auto it = vec.begin();
        a = *it++; b = *it++; c = *it++;
        int dummy[] = { (args = *it++, 0)... };
        static_cast<void>(dummy);
    }
    template <typename T, typename... Args>
    void Sortr(T& a, T& b, T& c, Args&... args) {
        vector<T> vec = {a, b, c, args...};
        sort(vec.rbegin(), vec.rend());
        auto it = vec.begin();
        a = *it++; b = *it++; c = *it++;
        int dummy[] = { (args = *it++, 0)... };
        static_cast<void>(dummy);
    }
    template <class T>
    void sort(vector<T> &A, vector<T> &B) {
        vector<pair<T, T>> P(A.size());
        for (int i = 0; i < A.size(); i++) P[i] = {A[i], B[i]};
        sort(P.begin(), P.end());
        for (int i = 0; i < A.size(); i++) A[i] = P[i].first, B[i] = P[i].second;
    }

    istream &operator >>(istream &is, __int128_t& x) {
        string S; is >> S;
        __int128_t ret = 0;
        int f = 1;
        if (S[0] == '-') f = -1; 
        for (int i = 0; i < S.length(); i++)
            if ('0' <= S[i] && S[i] <= '9')
                ret = ret * 10 + S[i] - '0';
        x = ret * f;
        return (is);
    }
    ostream &operator <<(ostream &os, __int128_t x) {
        ostream::sentry s(os);
        if (s) {
            __uint128_t tmp = x < 0 ? -x : x;
            char buffer[128]; char *d = end(buffer);
            do {
                --d; *d = "0123456789"[tmp % 10]; tmp /= 10;
            } while (tmp != 0);
            if (x < 0) { --d; *d = '-'; }
            int len = end(buffer) - d;
            if (os.rdbuf()->sputn(d, len) != len) os.setstate(ios_base::badbit);
        }
        return os;
    }
    
    __int128_t sto128(const string &S) {
        __int128_t ret = 0; int f = 1;
        if (S[0] == '-') f = -1; 
        for (int i = 0; i < S.length(); i++)
            if ('0' <= S[i] && S[i] <= '9') ret = ret * 10 + S[i] - '0';
        return ret * f;
    }
    __int128_t gcd(__int128_t a, __int128_t b) { return b ? gcd(b, a % b) : a; }
    __int128_t lcm(__int128_t a, __int128_t b) {
        return a / gcd(a, b) * b;
        // lcmが__int128_tに収まる必要あり
    }
    
    string to_string(double x, int k) { // 小数第k+1を四捨五入して小数第k位までを出力
    // 切り捨てがほしい場合は to_string(x, k+1) として pop_back() すればよい?
        ostringstream os;
        os << fixed << setprecision(k) << x;
        return os.str();
    }
    string to_string(__int128_t x) {
        string ret = "";
        if (x < 0) { ret += "-"; x *= -1; }
        while (x) { ret += (char)('0' + x % 10); x /= 10; }
        reverse(ret.begin(), ret.end());
        return ret;
    }
    string to_string(char c) { string s = ""; s += c; return s; }
} using namespace util_function;

struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }
 
    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
        return splitmix64(x + FIXED_RANDOM);
    }
};

template<class T> size_t HashCombine(const size_t seed,const T &v) {
    return seed^(hash<T>()(v)+0x9e3779b9+(seed<<6)+(seed>>2));
}
template<class T,class S> struct hash<pair<T,S>>{
    size_t operator()(const pair<T,S> &keyval) const noexcept {
        return HashCombine(hash<T>()(keyval.first), keyval.second);
    }
};
template<class T> struct hash<vector<T>>{
    size_t operator()(const vector<T> &keyval) const noexcept {
        size_t s=0;
        for (auto&& v: keyval) s=HashCombine(s,v);
        return s;
    }
};
template<int N> struct HashTupleCore{
    template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{
        size_t s=HashTupleCore<N-1>()(keyval);
        return HashCombine(s,get<N-1>(keyval));
    }
};
template <> struct HashTupleCore<0>{
    template<class Tuple> size_t operator()(const Tuple &keyval) const noexcept{ return 0; }
};
template<class... Args> struct hash<tuple<Args...>>{
    size_t operator()(const tuple<Args...> &keyval) const noexcept {
        return HashTupleCore<tuple_size<tuple<Args...>>::value>()(keyval);
    }
};

template<typename T>
class Compress {
public:
    int sz = 0;
    vector<T> uniqV;

    Compress() {}
    
    template<typename... Vecs>
    Compress(const Vecs&... vecs) {
        (uniqV.insert(uniqV.end(), vecs.begin(), vecs.end()), ...);
        sort(uniqV.begin(), uniqV.end());
        uniqV.erase(unique(uniqV.begin(), uniqV.end()), uniqV.end());
        sz = uniqV.size();
    }

    vector<int> zip(const vector<T> &V) {
        vector<int> ret(V.size());
        for (int i = 0; i < V.size(); i++) {
            ret[i] = encode(V[i]);
        }
        return ret;
    }

    vector<T> unzip(const vector<int> &V) {
        vector<T> ret(V.size());
        for (int i = 0; i < V.size(); i++) {
            ret[i] = decode(V[i]);
        }
        return ret;
    }

    int size() { return sz; }

    int encode(T x) {
        auto it = lower_bound(uniqV.begin(), uniqV.end(), x);
        return it - uniqV.begin();
    }

    T decode(int x) {
        if (x < 0 or x >= uniqV.size()) return -1; // xが範囲外の場合
        return uniqV[x];
    }
};
 
class UnionFind {
public:
	UnionFind() = default;
    UnionFind(int N) : par(N), sz(N, 1) {
        iota(par.begin(), par.end(), 0);
    }
	int root(int x) {
		if (par[x] == x) return x;
		return (par[x] = root(par[x]));
	}
	bool unite(int x, int y) {
		int rx = root(x);
		int ry = root(y);
        if (rx == ry) return false;
		if (sz[rx] < sz[ry]) swap(rx, ry);
		sz[rx] += sz[ry];
		par[ry] = rx;
        return true;
	}
	bool issame(int x, int y) { return (root(x) == root(y)); }
	int size(int x) { return sz[root(x)]; }
    vector<vector<int>> groups(int N) {
        vector<vector<int>> G(N);
        for (int x = 0; x < N; x++) {
            G[root(x)].push_back(x);
        }
		G.erase( remove_if(G.begin(), G.end(),
            [&](const vector<int>& V) { return V.empty(); }), G.end());
        return G;
    }
private:
	vector<int> par, sz;
};
 
template<typename T> struct BIT {
    int N;             // 要素数
    vector<T> bit[2];  // データの格納先
    BIT(int N_, int x = 0) {
        N = N_ + 1;
        bit[0].assign(N, 0); bit[1].assign(N, 0);
        if (x != 0) {
            for (int i = 0; i < N; i++) add(i, x);
        }
    }
    BIT(const vector<T> &A) {
        N = A.size() + 1;
        bit[0].assign(N, 0); bit[1].assign(N, 0);
        for (int i = 0; i < (int)A.size(); i++) add(i, A[i]);
    }
    void add_sub(int p, int i, T x) {
        while (i < N) { bit[p][i] += x; i += (i & -i); }
    }
    void add(int l, int r, T x) {
        add_sub(0, l + 1, -x * l); add_sub(0, r + 1, x * r);
        add_sub(1, l + 1, x); add_sub(1, r + 1, -x);
    }
    void add(int i, T x) { add(i, i + 1, x); }
    T sum_sub(int p, int i) {
        T ret = 0;
        while (i > 0) { ret += bit[p][i]; i -= (i & -i); }
        return ret;
    }
    T sum(int i) { return sum_sub(0, i) + sum_sub(1, i) * i; }
    T sum(int l, int r) { return sum(r) - sum(l); }
    T get(int i) { return sum(i, i + 1); }
    void set(int i, T x) { T s = get(i); add(i, -s + x); }
};
 
template<int mod> class Modint {
public:
    int val = 0;
    Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }
    Modint(const Modint &r) { val = r.val; }
 
    Modint operator -() { return Modint(-val); } // 単項
    Modint operator +(const Modint &r) { return Modint(*this) += r; }
    Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; }
    Modint operator -(const Modint &r) { return Modint(*this) -= r; }
    Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; }
    Modint operator *(const Modint &r) { return Modint(*this) *= r; }
    Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; }
    Modint operator /(const Modint &r) { return Modint(*this) /= r; }
    Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; }
    
    Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置
    Modint operator ++(signed) { ++*this; return *this; } // 後置
    Modint& operator --() { val--; if (val < 0) val += mod; return *this; }
    Modint operator --(signed) { --*this; return *this; }
    Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; }
    Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; }
    Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; }
    Modint &operator -=(const int &q) { Modint r(q);  if (val < r.val) val += mod; val -= r.val; return *this; }
    Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; }
    Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; }
    Modint &operator /=(const Modint &r) {
        int a = r.val, b = mod, u = 1, v = 0;
        while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}
        val = val * u % mod; if (val < 0) val += mod;
        return *this;
    }
    Modint &operator /=(const int &q) {
        Modint r(q); int a = r.val, b = mod, u = 1, v = 0;
        while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}
        val = val * u % mod; if (val < 0) val += mod;
        return *this;
    }
    bool operator ==(const Modint& r) { return this -> val == r.val; }
    bool operator <(const Modint& r) { return this -> val < r.val; }
    bool operator >(const Modint& r) { return this -> val > r.val; }
    bool operator !=(const Modint& r) { return this -> val != r.val; }

    friend istream &operator >>(istream &is, Modint& x) {
        int t; is >> t; x = t; return (is);
    }
    friend ostream &operator <<(ostream &os, const Modint& x) {
        return os << x.val;
    }
};
using mint = Modint<MOD>;
 
mint modpow(const mint &x, int n) {
    if (n < 0) return (mint)1 / modpow(x, -n); // 未verify
    assert(n >= 0);
    if (n == 0) return 1;
    mint t = modpow(x, n / 2);
    t = t * t;
    if (n & 1) t = t * x;
    return t;
}
int modpow(__int128_t x, int n, int mod) {
    if (n == 0 && mod == 1) return 0;
    assert(n >= 0 && mod > 0); // TODO: n <= -1
    __int128_t ret = 1;
    while (n > 0) {
        if (n % 2 == 1) ret = ret * x % mod;
        x = x * x % mod;
        n /= 2;
    }
    return ret;
}
// int modinv(__int128_t x, int mod) { // 
//     assert(mod > 0);
//     // assert(x > 0);
//     if (x == 1 or x == 0) return 1;
//     return mod - modinv(mod % x, mod) * (mod / x) % mod;
// }

vector<mint> _fac, _finv, _inv;
void COMinit(int N) {
    _fac.resize(N + 1); _finv.resize(N + 1);  _inv.resize(N + 1);
    _fac[0] = _fac[1] = 1; _finv[0] = _finv[1] = 1; _inv[1] = 1;
    for (int i = 2; i <= N; i++) {
        _fac[i] = _fac[i-1] * mint(i);
        _inv[i] = -_inv[MOD % i] * mint(MOD / i);
        _finv[i] = _finv[i - 1] * _inv[i];
    }
}
 
mint FAC(int N) {
    if (N < 0) return 0; return _fac[N];
}
mint FACinv(int N) {
    if (N < 0) return 0; return _finv[N];
}
mint COM(int N, int K) {
    if (N < K) return 0; if (N < 0 or K < 0) return 0;
    return _fac[N] * _finv[K] * _finv[N - K];
}
mint COMinv(int N, int K) {
    if (N < K) return 0; if (N < 0 or K < 0) return 0;
    return _finv[N] * _fac[K] * _fac[N - K];
}
mint MCOM(const vector<int> &V) {
    int N = 0;
    for (int i = 0; i < V.size(); i++) N += V[i];
    mint ret = _fac[N];
    for (int i = 0; i < V.size(); i++) ret *= _finv[V[i]];
    return ret;
}
mint PERM(int N, int K) {
    if (N < K) return 0; if (N < 0 or K < 0) return 0;
    return _fac[N] *  _finv[N - K];
}
mint NHK(int N, int K) { // initのサイズに注意
    if (N == 0 && K == 0)  return 1;
    return COM(N + K - 1, K);
}
 
#pragma endregion


namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

template <typename Key, typename Val>
struct HashMap {
    using u32 = uint32_t;
    using u64 = uint64_t;

    u32 cap, s;
    vector<Key> keys;
    vector<Val> vals;
    vector<bool> flag;
    u64 r;
    u32 shift;
    Val DefaultValue;

    static u64 rng() {
        u64 m = chrono::duration_cast<chrono::nanoseconds>(
                    chrono::high_resolution_clock::now().time_since_epoch())
                    .count();
        m ^= m >> 16;
        m ^= m << 32;
        return m;
    }

    void reallocate() {
        cap <<= 1;
        vector<Key> k(cap);
        vector<Val> v(cap);
        vector<bool> f(cap);
        u32 sh = shift - 1;
        for (int i = 0; i < (int)flag.size(); i++) {
        if (flag[i]) {
            u32 hash = (u64(keys[i]) * r) >> sh;
            while (f[hash]) hash = (hash + 1) & (cap - 1);
            k[hash] = keys[i];
            v[hash] = vals[i];
            f[hash] = 1;
        }
        }
        keys.swap(k);
        vals.swap(v);
        flag.swap(f);
        --shift;
    }

    explicit HashMap()
        : cap(8),
            s(0),
            keys(cap),
            vals(cap),
            flag(cap),
            r(rng()),
            shift(64 - __lg(cap)),
            DefaultValue(Val()) {}

    Val& operator[](const Key& i) {
        u32 hash = (u64(i) * r) >> shift;
        while (true) {
        if (!flag[hash]) {
            if (s + s / 4 >= cap) {
            reallocate();
            return (*this)[i];
            }
            keys[hash] = i;
            flag[hash] = 1;
            ++s;
            return vals[hash] = DefaultValue;
        }
        if (keys[hash] == i) return vals[hash];
        hash = (hash + 1) & (cap - 1);
        }
    }

    // exist -> return pointer of Val
    // not exist -> return nullptr
    const Val* find(const Key& i) const {
        u32 hash = (u64(i) * r) >> shift;
        while (true) {
        if (!flag[hash]) return nullptr;
        if (keys[hash] == i) return &(vals[hash]);
        hash = (hash + 1) & (cap - 1);
        }
    }

    // return vector< pair<const Key&, val& > >
    vector<pair<Key, Val>> enumerate() const {
        vector<pair<Key, Val>> ret;
        for (u32 i = 0; i < cap; ++i)
        if (flag[i]) ret.emplace_back(keys[i], vals[i]);
        return ret;
    }

    int size() const { return s; }

    // set default_value
    void set_default(const Val& val) { DefaultValue = val; }
};

template <typename S, typename T>
struct DynamicBIT {
	S N;
	HashMap<S, T> data;
	explicit DynamicBIT() = default;
	explicit DynamicBIT(S size) { N = size + 1; }
    // explicit DynamicBIT(const vector<S> &A) {
    //     N = A.size() + 1;
    //     for (int i = 0; i < N; i++) add(i, A[i]);
    // }

	void add(S k, T x) {
		for (++k; k < N; k += k & -k) data[k] += x;
	}
	void set(S k, T x) {
		add(k, -get(k) + x);
	}

	// [0, k)
	T sum(S k) const {
		if (k < 0) return 0;
		T ret = T();
		for (; k > 0; k -= k & -k) {
            const T* p = data.find(k);
            ret += p ? *p : T();
		}
		return ret;
	}

	// [a, b)
	T sum(S a, S b) const { return sum(b) - sum(a); }
	T get(S k) const { return sum(k + 1) - sum(k); }

	T operator[](S k) const { return sum(k + 1) - sum(k); }

	S lower_bound(T w) {
		if (w <= 0) return 0;
		S x = 0;
		for (S k = 1 << __lg(N); k; k >>= 1) {
            if (x + k <= N - 1 && data[x + k] < w) {
                w -= data[x + k];
                x += k;
            }
		}
		return x;
	}
};

using S = modint1000000007;

signed main() {
    int N;
    cin >> N;
	vector<int> A(N);
	for (int i = 0; i < N; i++) cin >> A[i];
    
    Compress<int> C(A);
    A = C.zip(A);

    int len = 0;
    vector<int> dp(N + 1, INF); // A[i] を末尾とするLISの長さの最大値
    vector<int> L(N + 1); // 長さiのLISの末尾としてありえる最小値
    vector<S> cnt(N); // A[i] を末尾とするLISの個数

    const int ma = C.size() + 1;
    vector<DynamicBIT<int, S>> bit(N + 1, DynamicBIT<int, S>(ma));

    for (int i = 0; i < N; i++) { // 2周目
		int x = lower_bound(L.begin(), L.begin() + len, A[i]) - L.begin();
        dp[i] = x + 1;
        L[x] = A[i];
        if (dp[i] > len) len++;

        if (dp[i] > 0) {
            // [x1, x2), [y1, y2)
            cnt[i] += bit[dp[i] - 1].sum(0, A[i]);
        }
        if (cnt[i].val() == 0) cnt[i] = 1; // 実際は矩形領域内の総和が0であるかを複数modで確かめる必要あり
        bit[dp[i]].add(A[i], cnt[i]);
	}

    S ans = 0;
    for (int i = 0; i < N; i++) {
        if (dp[i] == len) ans += cnt[i];
    }
    cout << ans.val() << endl;
}
0