結果
問題 | No.2976 高階多点評価 |
ユーザー | ecottea |
提出日時 | 2024-11-28 22:26:50 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,378 bytes |
コンパイル時間 | 13,853 ms |
コンパイル使用メモリ | 469,496 KB |
実行使用メモリ | 7,976 KB |
最終ジャッジ日時 | 2024-11-28 22:27:36 |
合計ジャッジ時間 | 39,303 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
ソースコード
// QCFium 法#pragma GCC target("avx2")#pragma GCC optimize("O3")#pragma GCC optimize("unroll-loops")#ifndef HIDDEN_IN_VS // 折りたたみ用// 警告の抑制#define _CRT_SECURE_NO_WARNINGS// ライブラリの読み込み#include <bits/stdc++.h>using namespace std;// 型名の短縮using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;using Graph = vvi;// 定数の定義const double PI = acos(-1);const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)const vi DY = { 0, 1, 0, -1 };int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;// 入出力高速化struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(5); } } fastIOtmp;// 汎用マクロの定義#define all(a) (a).begin(), (a).end()#define sz(x) ((int)(x).size())#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 矩形内判定// 汎用関数の定義template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら trueを返す)template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら trueを返す)template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }// 演算子オーバーロードtemplate <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }#endif // 折りたたみ用#if __has_include(<atcoder/all>)#include <atcoder/all>using namespace atcoder;#ifdef _MSC_VER#include "localACL.hpp"#endif//using mint = modint1000000007;using mint = modint998244353;//using mint = modint; // mint::set_mod(m);namespace atcoder {inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }}using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;#endif#ifdef _MSC_VER // 手元環境(Visual Studio)#include "local.hpp"#else // 提出用(gcc)inline int popcount(int n) { return __builtin_popcount(n); }inline int popcount(ll n) { return __builtin_popcountll(n); }inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }#define dump(...)#define dumpel(v)#define dump_list(v)#define dump_mat(v)#define input_from_file(f)#define output_to_file(f)#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }#endif#include <boost/multiprecision/cpp_int.hpp>using Bint = boost::multiprecision::cpp_int;void zikken() {// 係数列を前もって計算しておく.int N = 200;vector<vector<Bint>> f(N + 1);f[0] = vector<Bint>{ 1 };repi(n, 1, N) {f[n].resize(n + 1);rep(i, n) f[n][i + 1] -= 2 * n * f[n - 1][i];repi(i, 1, n - 1) {f[n][i - 1] += i * f[n - 1][i];f[n][i + 1] += i * f[n - 1][i];}repi(i, 0, n) f[n][i] /= n;}// dumpel(f);vector<Bint> pow100000(N + 1);pow100000[0] = 1;rep(n, N) pow100000[n + 1] = pow100000[n] * 100000;repi(n, 1, N) repi(i, 0, n) f[n][i] *= pow100000[n - i];vd ans;int t;// cin >> t;t = 100001;rep(hoge, t) {int n; double x;// cin >> n >> x;n = 200;x = hoge * 0.00001;if (n == 0) {cout << 1 << "\n";continue;}Bint X((int)(x * 100000 + (x > 0 ? 0.1 : -0.1)));Bint X2 = X * X;// ここが TLE しそうだが・・・Bint Res = 0;for (int i = n; i >= 0; i -= 2) {Res *= X2;Res += f[n][i];}if (n & 1) Res *= X;double res = static_cast<double>(Res / pow100000[n - 1]);res /= pow(x * x + 1, n / 2.) * 100000.;// cout << res << "\n";ans.push_back(res);}// dump(ans);int K = sz(ans);int W = 120;double d_max = 0;//rep(k, K) {// int i = k / W * W;// int j = i + W;// if (j >= K) break;// double val = ans[i] + (ans[j] - ans[i]) / W * (k - i);// chmax(d_max, abs(ans[k] - val));//}//dump(d_max); // W=40: 線形補間 0.0008114rep(k, K - 2 * W) {int i0, i1, i2;if (k % W <= W / 2) {i1 = k / W * W;i0 = i1 - W;i2 = i1 + W;if (i0 < 0) {i0 += W;i1 += W;i2 += W;}}else {i0 = k / W * W;i1 = i0 + W;i2 = i1 + W;if (i2 >= K) {i0 -= W;i1 -= W;i2 -= W;}}double y0 = ans[i0];double y1 = ans[i1];double y2 = ans[i2];int i = k - i0;double val = (2 * W * W * y0 - i * W * (3 * y0 - 4 * y1 + y2) + i * i * (y0 - 2 * y1 + y2)) / (2 * W * W);chmax(d_max, abs(ans[k] - val));}dump(d_max); // W=100: 二次補間 0.000548767exit(0);}int main() {// input_from_file("input.txt");// output_to_file("output.txt");zikken();// 係数列を前もって計算しておく.int N = 200;vector<vector<Bint>> f(N + 1);f[0] = vector<Bint>{ 1 };repi(n, 1, N) {f[n].resize(n + 1);rep(i, n) f[n][i + 1] -= 2 * n * f[n - 1][i];repi(i, 1, n - 1) {f[n][i - 1] += i * f[n - 1][i];f[n][i + 1] += i * f[n - 1][i];}repi(i, 0, n) f[n][i] /= n;}vector<Bint> pow100000(N + 1);pow100000[0] = 1;rep(n, N) pow100000[n + 1] = pow100000[n] * 100000;repi(n, 1, N) repi(i, 0, n) f[n][i] *= pow100000[n - i];constexpr int W = 140; // 120 だと精度は足りるが TLE,140 だと間に合いはするが精度不足で WA// 標本点double sol[201][200000 / W + 2];repi(n, 1, 200) {for (int X_int = -100000; X_int <= 100000 + W; X_int += W) {Bint X = X_int;Bint X2 = X * X;Bint Res = 0;for (int i = n; i >= 0; i -= 2) {Res *= X2;Res += f[n][i];}if (n & 1) Res *= X;double val = static_cast<double>(Res / pow100000[n - 1]);double x = X_int / 100000.;val /= pow(x * x + 1, n / 2.) * 100000.;sol[n][X_int / W + 100000 / W] = val;}}// dumpel(sol);int t;cin >> t;rep(hoge, t) {int n; double x;cin >> n >> x;if (n == 0) {cout << 1 << "\n";continue;}int X_int((int)(x * 100000 + (x > 0 ? 0.1 : -0.1)));int R = (X_int + 100000) % W;int i0, i1, i2;if (R % W <= W / 2) {i1 = X_int - R;i0 = i1 - W;i2 = i1 + W;if (i0 < 0) {i0 += W;i1 += W;i2 += W;}}else {i0 = X_int - R;i1 = i0 + W;i2 = i1 + W;if (i2 > 100000) {i0 -= W;i1 -= W;i2 -= W;}}double y0 = sol[n][i0 / W + 100000 / W];double y1 = sol[n][i1 / W + 100000 / W];double y2 = sol[n][i2 / W + 100000 / W];int i = X_int - i0;// 2 次多項式補間double val = (2 * W * W * y0 - i * W * (3 * y0 - 4 * y1 + y2) + i * i * (y0 - 2 * y1 + y2)) / (2 * W * W);cout << val << "\n";}}