結果

問題 No.2969 ローラン単項式の微分
ユーザー erbowl
提出日時 2024-11-29 21:45:37
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 6,409 bytes
コンパイル時間 2,600 ms
コンパイル使用メモリ 249,004 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-29 21:45:41
合計ジャッジ時間 3,439 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

typedef long long ll;
typedef long double ld;
#include <bits/stdc++.h>
using namespace std;
// Union-Find
struct UnionFind {
// core member
vector<int> par;
// constructor
UnionFind() { }
UnionFind(int n) : par(n, -1) { }
void init(int n) { par.assign(n, -1); }
// core methods
int root(int x) {
if (par[x] < 0) return x;
else return par[x] = root(par[x]);
}
bool same(int x, int y) {
return root(x) == root(y);
}
bool merge(int x, int y) {
x = root(x), y = root(y);
if (x == y) return false;
if (par[x] > par[y]) swap(x, y); // merge technique
par[x] += par[y];
par[y] = x;
return true;
}
int size(int x) {
return -par[root(x)];
}
// get groups
vector<vector<int>> groups() {
vector<vector<int>> member(par.size());
for (int v = 0; v < (int)par.size(); ++v) {
member[root(v)].push_back(v);
}
vector<vector<int>> res;
for (int v = 0; v < (int)par.size(); ++v) {
if (!member[v].empty()) res.push_back(member[v]);
}
return res;
}
// debug
friend ostream& operator << (ostream &s, UnionFind uf) {
const vector<vector<int>> &gs = uf.groups();
for (const vector<int> &g : gs) {
s << "group: ";
for (int v : g) s << v << " ";
s << endl;
}
return s;
}
};
// modint
template<int MOD> struct Fp {
// inner value
long long val;
// constructor
constexpr Fp() : val(0) { }
constexpr Fp(long long v) : val(v % MOD) {
if (val < 0) val += MOD;
}
// getter
constexpr long long get() const {
return val;
}
constexpr int get_mod() const {
return MOD;
}
// comparison operators
constexpr bool operator == (const Fp &r) const {
return this->val == r.val;
}
constexpr bool operator != (const Fp &r) const {
return this->val != r.val;
}
// arithmetic operators
constexpr Fp& operator += (const Fp &r) {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -= (const Fp &r) {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp& operator *= (const Fp &r) {
val = val * r.val % MOD;
return *this;
}
constexpr Fp& operator /= (const Fp &r) {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp operator + () const { return Fp(*this); }
constexpr Fp operator - () const { return Fp(0) - Fp(*this); }
constexpr Fp operator + (const Fp &r) const { return Fp(*this) += r; }
constexpr Fp operator - (const Fp &r) const { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp &r) const { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp &r) const { return Fp(*this) /= r; }
// other operators
constexpr Fp& operator ++ () {
++val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -- () {
if (val == 0) val += MOD;
--val;
return *this;
}
constexpr Fp operator ++ (int) {
Fp res = *this;
++*this;
return res;
}
constexpr Fp operator -- (int) {
Fp res = *this;
--*this;
return res;
}
friend constexpr istream& operator >> (istream &is, Fp<MOD> &x) {
is >> x.val;
x.val %= MOD;
if (x.val < 0) x.val += MOD;
return is;
}
friend constexpr ostream& operator << (ostream &os, const Fp<MOD> &x) {
return os << x.val;
}
// other functions
constexpr Fp pow(long long n) const {
Fp res(1), mul(*this);
while (n > 0) {
if (n & 1) res *= mul;
mul *= mul;
n >>= 1;
}
return res;
}
constexpr Fp inv() const {
Fp res(1), div(*this);
return res / div;
}
friend constexpr Fp<MOD> pow(const Fp<MOD> &r, long long n) {
return r.pow(n);
}
friend constexpr Fp<MOD> inv(const Fp<MOD> &r) {
return r.inv();
}
};
struct Eratos {
vector<int> primes;
vector<bool> isprime;
vector<int> mebius;
vector<int> min_factor;
Eratos(int MAX) : primes(),
isprime(MAX+1, true),
mebius(MAX+1, 1),
min_factor(MAX+1, -1) {
isprime[0] = isprime[1] = false;
min_factor[0] = 0, min_factor[1] = 1;
for (int i = 2; i <= MAX; ++i) {
if (!isprime[i]) continue;
primes.push_back(i);
mebius[i] = -1;
min_factor[i] = i;
for (int j = i*2; j <= MAX; j += i) {
isprime[j] = false;
if ((j / i) % i == 0) mebius[j] = 0;
else mebius[j] = -mebius[j];
if (min_factor[j] == -1) min_factor[j] = i;
}
}
}
// prime factorization
vector<pair<int,int>> prime_factors(int n) {
vector<pair<int,int> > res;
while (n != 1) {
int prime = min_factor[n];
int exp = 0;
while (min_factor[n] == prime) {
++exp;
n /= prime;
}
res.push_back(make_pair(prime, exp));
}
return res;
}
// enumerate divisors
vector<int> divisors(int n) {
vector<int> res({1});
auto pf = prime_factors(n);
for (auto p : pf) {
int n = (int)res.size();
for (int i = 0; i < n; ++i) {
int v = 1;
for (int j = 0; j < p.second; ++j) {
v *= p.first;
res.push_back(res[i] * v);
}
}
}
return res;
}
};
signed main(){
ll n,m;
std::cin >> n>>m;
if(n==0||m==0){
std::cout << "No" << std::endl;
return 0;
}else{
std::cout << "Yes" << std::endl;
}
std::cout << n*m<<" "<<m-1 << std::endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0