結果
問題 |
No.2977 Kth Xor Pair
|
ユーザー |
|
提出日時 | 2024-12-02 04:24:06 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 10,637 bytes |
コンパイル時間 | 3,026 ms |
コンパイル使用メモリ | 209,520 KB |
最終ジャッジ日時 | 2025-02-26 10:28:26 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 5 RE * 29 |
ソースコード
#include <bits/stdc++.h> using namespace std; #define overload4(_1, _2, _3, _4, name, ...) name #define rep1(n) for(int i = 0; i < (int)(n); ++i) #define rep2(i, n) for(int i = 0; i < (int)(n); ++i) #define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i) #define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i) #define ALL(a) (a).begin(), (a).end() #define Sort(a) (sort((a).begin(), (a).end())) #define RSort(a) (sort((a).rbegin(), (a).rend())) #define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end())) typedef long long int ll; typedef unsigned long long ul; typedef long double ld; typedef vector<int> vi; typedef vector<long long> vll; typedef vector<char> vc; typedef vector<string> vst; typedef vector<double> vd; typedef vector<long double> vld; typedef pair<long long, long long> P; template<class T> long long sum(const T &a){ return accumulate(a.begin(), a.end(), 0LL); } template<class T> auto min(const T &a){ return *min_element(a.begin(), a.end()); } template<class T> auto max(const T &a){ return *max_element(a.begin(), a.end()); } const long long MINF = 0x7fffffffffff; const long long INF = 0x1fffffffffffffff; const long long MOD = 998244353; const long double EPS = 1e-9; const long double PI = acos(-1); template<class T> inline bool chmax(T &a, T b) { if(a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T &a, T b) { if(a > b) { a = b; return 1; } return 0; } template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; } template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return os; } template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; } template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; } template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " "; } return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; } template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; } template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; } template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; } template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os << pq.top() << " "; pq.pop(); } return os; } template <typename T> long long binary_search(long long ok, long long ng, T check){ while(abs(ok - ng) > 1){ long long mid = (ok + ng) / 2; if(check(mid)) ok = mid; else ng = mid; } return ok; } template <typename T> long double binary_search_real(long double ok, long double ng, T check, int iter = 100){ for(int i = 0; i < iter; ++i){ long double mid = (ok + ng) / 2; if(check(mid)) ok = mid; else ng = mid; } return ok; } template <typename T> long long trisum(T a, T b){ long long res = ((b - a + 1) * (a + b)) / 2; return res; } template <typename T> T intpow(T x, int n){ T ret = 1; while(n > 0) { if(n & 1) (ret *= x); (x *= x); n >>= 1; } return ret; } template <typename T> T getReminder(T a, T b){ if(b == 0) return -1; if(a >= 0 && b > 0){ return a % b; } else if(a < 0 && b > 0){ return ((a % b) + b) % b; } else if(a >= 0 && b < 0){ return a % b; } else{ return (abs(b) - abs(a % b)) % b; } } template<class T, class U> inline T vin(T &vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; } template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; } template<class... T> void in(T&... a){ (cin >> ... >> a); } void out(){ cout << '\n'; } template<class T, class... Ts> void out(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; } template<class T, class U> void inGraph(vector<vector<T>> &G, U n, U m, bool directed = false){ G.resize(n); for(int i = 0; i < m; ++i){ int a, b; cin >> a >> b; a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } } template <typename T, int MAX_LOG, int NODES = 1 << 22> struct BinaryTrie{ struct Node{ Node *nxt[2]; int exist; vector<int> accept; Node() {} }; Node *pool; int pid; T lazy; Node *nil; Node *root; BinaryTrie() : pid(0), lazy(0), nil(nullptr){ pool = new Node[NODES]; nil = _new(); nil->nxt[0] = nil->nxt[1] = root = nil; } Node *_new(const int exist_ = 0, const int id = -1){ pool[pid].nxt[0] = pool[pid].nxt[1] = nil; pool[pid].exist = exist_; if(id != -1) pool[pid].accept.push_back(id); return &(pool[pid++]); } Node *merge(Node *l, Node *r){ pool[pid].nxt[0] = l; pool[pid].nxt[1] = r; pool[pid].exist = l->exist + r->exist; return &(pool[pid++]); } private: Node *insert_(const T &x, const int id, Node *n, const int bit_idx){ if(bit_idx == -1) { if(n == nil){ return _new(1, id); } n->exist++; n->accept.push_back(id); return n; } if(((lazy >> bit_idx) & 1) == ((x >> bit_idx) & 1)){ return merge(insert_(x, id, n->nxt[0], bit_idx - 1), n->nxt[1]); } else{ return merge(n->nxt[0], insert_(x, id, n->nxt[1], bit_idx - 1)); } } Node *erase_(const T &x, const int id, Node *n, const int bit_idx){ if(bit_idx == -1){ n->exist--; return n; } if(((lazy >> bit_idx) & 1) == ((x >> bit_idx) & 1)){ return merge(erase_(x, id, n->nxt[0], bit_idx - 1), n->nxt[1]); } else{ return merge(n->nxt[0], erase_(x, id, n->nxt[1], bit_idx - 1)); } } pair<int, vector<int> &> find_(const T &x, Node *n, const int bit_idx){ if(bit_idx == -1){ return pair<int, vector<int> &>(n->exist, n->accept); } if(((lazy >> bit_idx) & 1) == ((x >> bit_idx) & 1)){ return find_(x, n->nxt[0], bit_idx - 1); } else{ return find_(x, n->nxt[1], bit_idx - 1); } } pair<T, vector<int> &> max_element_(Node *n, const int bit_idx) { if(bit_idx == -1){ return pair<T, vector<int> &>(0, n->accept); } if(n->nxt[~(lazy >> bit_idx) & 1]->exist){ auto ret = max_element_(n->nxt[~(lazy >> bit_idx) & 1], bit_idx - 1); ret.first |= T(1) << bit_idx; return ret; } return max_element_(n->nxt[(lazy >> bit_idx) & 1], bit_idx - 1); } pair<T, vector<int> &> min_element_(Node *n, const int bit_idx){ if(bit_idx == -1){ return pair<T, vector<int> &>(0, n->accept); } if(n->nxt[(lazy >> bit_idx) & 1]->exist){ return min_element_(n->nxt[(lazy >> bit_idx) & 1], bit_idx - 1); } auto ret = min_element_(n->nxt[~(lazy >> bit_idx) & 1], bit_idx - 1); ret.first |= T(1) << bit_idx; return ret; } // 1-indexed, minimum-kth pair<T, vector<int> &> kth_element_(Node *n, const int k, const int bit_idx){ if(bit_idx == -1){ return pair<T, vector<int> &>(0, n->accept); } int ex0 = n->nxt[(lazy >> bit_idx) & 1]->exist; if(ex0 < k){ auto ret = kth_element_(n->nxt[~(lazy >> bit_idx) & 1], k - ex0, bit_idx - 1); ret.first |= T(1) << bit_idx; return ret; } return kth_element_(n->nxt[(lazy >> bit_idx) & 1], k, bit_idx - 1); } int count_less_(Node *n, const T &x, const int bit_idx) { if(bit_idx == -1){ return 0; } int ret = 0; bool f = (lazy >> bit_idx) & 1; if((x >> bit_idx & 1) && n->nxt[f]){ ret += n->nxt[f]->exist; } if(n->nxt[f ^ (x >> bit_idx & 1)]){ ret += count_less_(n->nxt[f ^ (x >> bit_idx & 1)], x, bit_idx - 1); } return ret; } public: void insert(const T &x, const int id = -1){ root = insert_(x, id, root, MAX_LOG); } void erase(const T &x, const int id = -1){ root = erase_(x, id, root, MAX_LOG); } pair<int, vector<int> &> find(const T &x){ return find_(x, root, MAX_LOG); } pair<T, vector<int> &> max_element(){ return max_element_(root, MAX_LOG); } pair<T, vector<int> &> min_element(){ return min_element_(root, MAX_LOG); } pair<T, vector<int> &> kth_element(const int k){ return kth_element_(root, k, MAX_LOG); } int count_less(const T &x){ return count_less_(root, x, MAX_LOG); } size_t size() const { if(root->exist <= 0){ return 0; } return root->exist; } bool empty() const { return size() == 0; } void operate_xor(const T &x){ lazy ^= x; } }; ll T; void input(){ in(T); } void solve(){ ll n, k; in(n, k); vll a(n); in(a); BinaryTrie<ll, 30> bt; auto f = [&](ll x){ ll s = 0; rep(i, n){ bt.operate_xor(a[i]); s += bt.count_less(x + 1); bt.operate_xor(a[i]); bt.insert(a[i]); } rep(i, n) bt.erase(a[i]); return s >= k; }; out(binary_search(1LL << 30, -1LL, f)); } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(20); T = 1; // input(); while(T--) solve(); }