結果

問題 No.2977 Kth Xor Pair
ユーザー dyktr_06
提出日時 2024-12-02 04:24:28
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 10,637 bytes
コンパイル時間 2,523 ms
コンパイル使用メモリ 210,180 KB
最終ジャッジ日時 2025-02-26 10:28:43
ジャッジサーバーID
(参考情報)
judge2 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 5 TLE * 2 -- * 27
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(n) for(int i = 0; i < (int)(n); ++i)
#define rep2(i, n) for(int i = 0; i < (int)(n); ++i)
#define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i)
#define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)

#define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i)
#define ALL(a) (a).begin(), (a).end()
#define Sort(a) (sort((a).begin(), (a).end()))
#define RSort(a) (sort((a).rbegin(), (a).rend()))
#define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end()))

typedef long long int ll;
typedef unsigned long long ul;
typedef long double ld;
typedef vector<int> vi;
typedef vector<long long> vll;
typedef vector<char> vc;
typedef vector<string> vst;
typedef vector<double> vd;
typedef vector<long double> vld;
typedef pair<long long, long long> P;

template<class T> long long sum(const T &a){ return accumulate(a.begin(), a.end(), 0LL); }
template<class T> auto min(const T &a){ return *min_element(a.begin(), a.end()); }
template<class T> auto max(const T &a){ return *max_element(a.begin(), a.end()); }

const long long MINF = 0x7fffffffffff;
const long long INF = 0x1fffffffffffffff;
const long long MOD = 998244353;
const long double EPS = 1e-9;
const long double PI = acos(-1);

template<class T> inline bool chmax(T &a, T b) { if(a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T &a, T b) { if(a > b) { a = b; return 1; } return 0; }

template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return os; }
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; }
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " "; } return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; }
template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; }
template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; }
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os << pq.top() << " "; pq.pop(); } return os; }

template <typename T>
long long binary_search(long long ok, long long ng, T check){
    while(abs(ok - ng) > 1){
        long long mid = (ok + ng) / 2;
        if(check(mid)) ok = mid;
        else ng = mid;
    }
    return ok;
}

template <typename T>
long double binary_search_real(long double ok, long double ng, T check, int iter = 100){
    for(int i = 0; i < iter; ++i){
        long double mid = (ok + ng) / 2;
        if(check(mid)) ok = mid;
        else ng = mid;
    }
    return ok;
}

template <typename T>
long long trisum(T a, T b){
    long long res = ((b - a + 1) * (a + b)) / 2;
    return res;
}

template <typename T>
T intpow(T x, int n){
    T ret = 1;
    while(n > 0) {
        if(n & 1) (ret *= x);
        (x *= x);
        n >>= 1;
    }
    return ret;
}

template <typename T>
T getReminder(T a, T b){
    if(b == 0) return -1;
    if(a >= 0 && b > 0){
        return a % b;
    } else if(a < 0 && b > 0){
        return ((a % b) + b) % b;
    } else if(a >= 0 && b < 0){
        return a % b;
    } else{
        return (abs(b) - abs(a % b)) % b;
    }
}

template<class T, class U> inline T vin(T &vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; }
template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; }
template<class... T> void in(T&... a){ (cin >> ... >> a); }
void out(){ cout << '\n'; }
template<class T, class... Ts> void out(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
template<class T, class U> void inGraph(vector<vector<T>> &G, U n, U m, bool directed = false){ G.resize(n); for(int i = 0; i < m; ++i){ int a, b; cin >> a >> b; a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } }

template <typename T, int MAX_LOG, int NODES = 1 << 23>
struct BinaryTrie{
    struct Node{
        Node *nxt[2];
        int exist;
        vector<int> accept;
        Node() {}
    };
    Node *pool;
    int pid;
    T lazy;
    Node *nil;
    Node *root;

    BinaryTrie() : pid(0), lazy(0), nil(nullptr){
        pool = new Node[NODES];
        nil = _new();
        nil->nxt[0] = nil->nxt[1] = root = nil;
    }

    Node *_new(const int exist_ = 0, const int id = -1){
        pool[pid].nxt[0] = pool[pid].nxt[1] = nil;
        pool[pid].exist = exist_;
        if(id != -1) pool[pid].accept.push_back(id);
        return &(pool[pid++]);
    }

    Node *merge(Node *l, Node *r){
        pool[pid].nxt[0] = l;
        pool[pid].nxt[1] = r;
        pool[pid].exist = l->exist + r->exist;
        return &(pool[pid++]);
    }

private:
    Node *insert_(const T &x, const int id, Node *n, const int bit_idx){
        if(bit_idx == -1) {
            if(n == nil){
                return _new(1, id);
            }
            n->exist++;
            n->accept.push_back(id);
            return n;
        }
        if(((lazy >> bit_idx) & 1) == ((x >> bit_idx) & 1)){
            return merge(insert_(x, id, n->nxt[0], bit_idx - 1), n->nxt[1]);
        } else{
            return merge(n->nxt[0], insert_(x, id, n->nxt[1], bit_idx - 1));
        }
    }

    Node *erase_(const T &x, const int id, Node *n, const int bit_idx){
        if(bit_idx == -1){
            n->exist--;
            return n;
        }
        if(((lazy >> bit_idx) & 1) == ((x >> bit_idx) & 1)){
            return merge(erase_(x, id, n->nxt[0], bit_idx - 1), n->nxt[1]);
        } else{
            return merge(n->nxt[0], erase_(x, id, n->nxt[1], bit_idx - 1));
        }
    }

    pair<int, vector<int> &> find_(const T &x, Node *n, const int bit_idx){
        if(bit_idx == -1){
            return pair<int, vector<int> &>(n->exist, n->accept);
        }
        if(((lazy >> bit_idx) & 1) == ((x >> bit_idx) & 1)){
            return find_(x, n->nxt[0], bit_idx - 1);
        } else{
            return find_(x, n->nxt[1], bit_idx - 1);
        }
    }

    pair<T, vector<int> &> max_element_(Node *n, const int bit_idx) {
        if(bit_idx == -1){
            return pair<T, vector<int> &>(0, n->accept);
        }
        if(n->nxt[~(lazy >> bit_idx) & 1]->exist){
            auto ret = max_element_(n->nxt[~(lazy >> bit_idx) & 1], bit_idx - 1);
            ret.first |= T(1) << bit_idx;
            return ret;
        }
        return max_element_(n->nxt[(lazy >> bit_idx) & 1], bit_idx - 1);
    }

    pair<T, vector<int> &> min_element_(Node *n, const int bit_idx){
        if(bit_idx == -1){
            return pair<T, vector<int> &>(0, n->accept);
        }

        if(n->nxt[(lazy >> bit_idx) & 1]->exist){
            return min_element_(n->nxt[(lazy >> bit_idx) & 1], bit_idx - 1);
        }

        auto ret = min_element_(n->nxt[~(lazy >> bit_idx) & 1], bit_idx - 1);
        ret.first |= T(1) << bit_idx;
        return ret;
    }

    // 1-indexed, minimum-kth
    pair<T, vector<int> &> kth_element_(Node *n, const int k, const int bit_idx){
        if(bit_idx == -1){
            return pair<T, vector<int> &>(0, n->accept);
        }

        int ex0 = n->nxt[(lazy >> bit_idx) & 1]->exist;
        if(ex0 < k){
            auto ret = kth_element_(n->nxt[~(lazy >> bit_idx) & 1], k - ex0, bit_idx - 1);
            ret.first |= T(1) << bit_idx;
            return ret;
        }
        return kth_element_(n->nxt[(lazy >> bit_idx) & 1], k, bit_idx - 1);
    }

    int count_less_(Node *n, const T &x, const int bit_idx) {
        if(bit_idx == -1){
            return 0;
        }

        int ret = 0;
        bool f = (lazy >> bit_idx) & 1;
        if((x >> bit_idx & 1) && n->nxt[f]){
            ret += n->nxt[f]->exist;
        }
        if(n->nxt[f ^ (x >> bit_idx & 1)]){
            ret += count_less_(n->nxt[f ^ (x >> bit_idx & 1)], x, bit_idx - 1);
        }
        return ret;
    }

public:
    void insert(const T &x, const int id = -1){
        root = insert_(x, id, root, MAX_LOG);
    }

    void erase(const T &x, const int id = -1){
        root = erase_(x, id, root, MAX_LOG);
    }

    pair<int, vector<int> &> find(const T &x){
        return find_(x, root, MAX_LOG);
    }

    pair<T, vector<int> &> max_element(){
        return max_element_(root, MAX_LOG);
    }

    pair<T, vector<int> &> min_element(){
        return min_element_(root, MAX_LOG);
    }

    pair<T, vector<int> &> kth_element(const int k){
        return kth_element_(root, k, MAX_LOG);
    }

    int count_less(const T &x){
        return count_less_(root, x, MAX_LOG);
    }

    size_t size() const {
        if(root->exist <= 0){
            return 0;
        }
        return root->exist;
    }

    bool empty() const {
        return size() == 0;
    }

    void operate_xor(const T &x){
        lazy ^= x;
    }
};

ll T;

void input(){
    in(T);
}

void solve(){
    ll n, k; in(n, k);
    vll a(n); in(a);
    BinaryTrie<ll, 30> bt;
    auto f = [&](ll x){
        ll s = 0;
        rep(i, n){
            bt.operate_xor(a[i]);
            s += bt.count_less(x + 1);
            bt.operate_xor(a[i]);
            bt.insert(a[i]);
        }
        rep(i, n) bt.erase(a[i]);
        return s >= k;
    };
    out(binary_search(1LL << 30, -1LL, f));
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(20);

    T = 1;
    // input();
    while(T--) solve();
}
0