結果
問題 |
No.2973 シュニレルマン積分入門
|
ユーザー |
|
提出日時 | 2024-12-02 21:59:13 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 967 bytes |
コンパイル時間 | 229 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 89,984 KB |
最終ジャッジ日時 | 2024-12-02 21:59:32 |
合計ジャッジ時間 | 18,078 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 25 WA * 5 |
ソースコード
import cmath import math from fractions import Fraction N = int(input()) M = 1 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 val = 0 for k in range(M): num = cmath.exp(2 * k * N * math.pi * 1j / M) dnm = cmath.exp(4 * k * math.pi * 1j / M) dnm += cmath.exp(2 * k * math.pi * 1j / M) dnm += 10 val += num / dnm val /= M # print(val) # これもだめ dnm = 10**max(-N+1,0) num = round(val.real * dnm) print(num, dnm, sep='/') # Fraction で有理数近似しようと思ったけど精度が足りない # x = Fraction(val.real) # y = x.limit_denominator(10**(-N+1)) # # print(y) # y_num = y.numerator # y_dnm = y.denominator # tmp = y_dnm # c2 = 0 # c5 = 0 # while tmp % 2 == 0: # c2 += 1 # tmp //= 2 # while tmp % 5 == 0: # c5 += 1 # tmp //= 5 # # print(c2, c5, tmp) # if c2 > c5: # y_num *= 5**(c2-c5) # y_dnm *= 5**(c2-c5) # elif c2 < c5: # y_num *= 2**(c5-c2) # y_dnm *= 2**(c5-c2) # print(y_num, y_dnm, sep='/')