結果

問題 No.1962 Not Divide
ユーザー Taiki0715Taiki0715
提出日時 2024-12-04 16:39:18
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 26 ms / 2,000 ms
コード長 19,185 bytes
コンパイル時間 5,667 ms
コンパイル使用メモリ 333,856 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-12-04 16:39:26
合計ジャッジ時間 7,112 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 13 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 12 ms
5,248 KB
testcase_06 AC 24 ms
5,248 KB
testcase_07 AC 3 ms
5,248 KB
testcase_08 AC 25 ms
5,248 KB
testcase_09 AC 12 ms
5,248 KB
testcase_10 AC 3 ms
5,248 KB
testcase_11 AC 14 ms
5,248 KB
testcase_12 AC 7 ms
5,248 KB
testcase_13 AC 7 ms
5,248 KB
testcase_14 AC 15 ms
5,248 KB
testcase_15 AC 4 ms
5,248 KB
testcase_16 AC 3 ms
5,248 KB
testcase_17 AC 14 ms
5,248 KB
testcase_18 AC 1 ms
5,248 KB
testcase_19 AC 2 ms
5,248 KB
testcase_20 AC 25 ms
5,248 KB
testcase_21 AC 25 ms
5,248 KB
testcase_22 AC 26 ms
5,248 KB
testcase_23 AC 25 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#if __has_include(<atcoder/all>)
#include <atcoder/all>
#endif
using ll=long long;
using ull=unsigned long long;
using P=pair<ll,ll>;
template<typename T>using minque=priority_queue<T,vector<T>,greater<T>>;
template<typename T>bool chmax(T &a,const T &b){return (a<b?(a=b,true):false);}
template<typename T>bool chmin(T &a,const T &b){return (a>b?(a=b,true):false);}
template<typename T1,typename T2>istream &operator>>(istream &is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}
template<typename T>istream &operator>>(istream &is,vector<T> &a){for(auto &i:a)is>>i;return is;}
template<typename T1,typename T2>void operator++(pair<T1,T2>&a,int n){a.first++,a.second++;}
template<typename T1,typename T2>void operator--(pair<T1,T2>&a,int n){a.first--,a.second--;}
template<typename T>void operator++(vector<T>&a,int n){for(auto &i:a)i++;}
template<typename T>void operator--(vector<T>&a,int n){for(auto &i:a)i--;}
#define overload3(_1,_2,_3,name,...) name
#define rep1(i,n) for(int i=0;i<(int)(n);i++)
#define rep2(i,l,r) for(int i=(int)(l);i<(int)(r);i++)
#define rep(...) overload3(__VA_ARGS__,rep2,rep1)(__VA_ARGS__)
#define reps(i,l,r) rep2(i,l,r)
#define all(x) x.begin(),x.end()
#define pcnt(x) __builtin_popcountll(x)
#define fin(x) return cout<<(x)<<'\n',static_cast<void>(0)
#define yn(x) cout<<((x)?"Yes\n":"No\n")
ll myceil(ll a,ll b){return (a+b-1)/b;}
template<typename T,size_t n,size_t id=0>
auto vec(const int (&d)[n],const T &init=T()){
  if constexpr (id<n)return vector(d[id],vec<T,n,id+1>(d,init));
  else return init;
}
#ifdef LOCAL
#include<debug.h>
#else
#define debug(...) static_cast<void>(0)
#define debugg(...) static_cast<void>(0)
template<typename T1,typename T2>ostream &operator<<(ostream &os,const pair<T1,T2>&p){os<<p.first<<' '<<p.second;return os;}
#endif
struct Timer{
  clock_t start;
  Timer(){
    start=clock();
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout<<fixed<<setprecision(16);
  }
  inline double now(){return (double)(clock()-start)/1000;}
  #ifdef LOCAL
  ~Timer(){
    cerr<<"time:";
    cerr<<now();
    cerr<<"ms\n";
  }
  #endif
}timer;
void SOLVE();
int main(){
  int testcase=1;
  //cin>>testcase;
  for(int i=0;i<testcase;i++){
    SOLVE();
  }
}
#include<type_traits>
template<typename T>
constexpr std::enable_if_t<(std::numeric_limits<T>::digits<=32),T>pow_mod(T a,T n,T mod){
  using u64=unsigned long long;
  u64 res=1;
  while(n>0){
    if(n&1)res=((u64)res*a)%mod;
    a=((u64)a*a)%mod;
    n>>=1;
  }
  return T(res);
}
template<typename T>
constexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),T>pow_mod(T a,T n,T mod){
  using u128=__uint128_t;
  u128 res=1;
  while(n>0){
    if(n&1)res=((u128)res*a)%mod;
    a=((u128)a*a)%mod;
    n>>=1;
  }
  return T(res);
}
constexpr int primitive_root_constexpr(int x){
  if(x==167772161)return 3;
  if(x==469762049)return 3;
  if(x==754974721)return 11;
  if(x==880803841)return 26;
  if(x==998244353)return 3;
  if(x==2)return 1;
  int x2=x;
  int p[20];
  int c=0;
  x--;
  for(int i=2;i*i<=x;i++){
    if(x%i==0){
      p[c++]=i;
      while(x%i==0)x/=i;
    }
  }
  if(x!=1)p[c++]=x;
  x=x2;
  for(int g=2;;g++){
    bool ok=true;
    for(int i=0;i<c;i++)if(pow_mod(g,(x-1)/p[i],x)==1){
      ok=false;
      break;
    }
    if(ok)return g;
  }
}
template<typename T>
constexpr std::enable_if_t<std::numeric_limits<T>::digits<=32,int>msb(T n){return n==0?-1:31-__builtin_clz(n);}
template<typename T>
constexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),int>msb(T n){return n==0?-1:63-__builtin_clzll(n);}

template<typename T>
constexpr std::enable_if_t<std::numeric_limits<T>::digits<=32,int>lsb(T n){return n==0?-1:__builtin_ctz(n);}
template<typename T>
constexpr std::enable_if_t<(std::numeric_limits<T>::digits>32),int>lsb(T n){return n==0?-1:__builtin_ctzll(n);}

template<typename T>
constexpr std::enable_if_t<std::is_integral_v<T>,T>floor_pow2(T n){return n==0?0:T(1)<<msb(n);}

template<typename T>
constexpr std::enable_if_t<std::is_integral_v<T>,T>ceil_pow2(T n){return n<=1?1:T(1)<<(msb(n-1)+1);}
template<int m>
struct ntt_root{
  static constexpr int rank2=lsb(m-1);
  static constexpr int g=primitive_root_constexpr(m);
  std::array<int,rank2+1>root,invroot;
  std::array<int,std::max(0,rank2-1)>rate2,invrate2;
  std::array<int,std::max(0,rank2-2)>rate3,invrate3;
  constexpr ntt_root(){
    root[rank2]=pow_mod(g,m>>rank2,m);
    invroot[rank2]=pow_mod(root[rank2],m-2,m);
    for(int i=rank2-1;i>=0;i--){
      root[i]=(long long)root[i+1]*root[i+1]%m;
      invroot[i]=(long long)invroot[i+1]*invroot[i+1]%m;
    }
    int prod=1,invprod=1;
    for(int i=0;i<rank2-1;i++){
      rate2[i]=(long long)root[i+2]*prod%m;
      invrate2[i]=(long long)invroot[i+2]*invprod%m;
      prod=(long long)prod*invroot[i+2]%m;
      invprod=(long long)invprod*root[i+2]%m;
    }
    prod=invprod=1;
    for(int i=0;i<rank2-2;i++){
      rate3[i]=(long long)root[i+3]*prod%m;
      invrate3[i]=(long long)invroot[i+3]*invprod%m;
      prod=(long long)prod*invroot[i+3]%m;
      invprod=(long long)invprod*root[i+3]%m;
    }
  }
};
template<typename T>
void dft(std::vector<T>&a){
  static constexpr ntt_root<T::mod()>r;
  static constexpr unsigned long long mod2=(unsigned long long)T::mod()*T::mod();
  int n=a.size();
  int h=lsb(n);
  int len=0;
  while(len<h){
    if(h-len==1){
      T rot=T::raw(1);
      for(int s=0;s<(1<<len);s++){
        int of=s*2;
        T u=a[of],v=a[of+1]*rot;
        a[of]=u+v;
        a[of+1]=u-v;
        rot*=T::raw(r.rate2[lsb(~(unsigned int)s)]);
      }
      len++;
    }
    else{
      int p=1<<(h-len-2);
      T rot=T::raw(1),imag=T::raw(r.root[2]);
      for(int s=0;s<(1<<len);s++){
        const unsigned long long rot1=rot.val(),rot2=rot1*rot1%T::mod(),rot3=rot1*rot2%T::mod();
        int of=s<<(h-len);
        for(int i=0;i<p;i++){
          const unsigned long long a0=a[i+of].val(),a1=(unsigned long long)a[i+of+p].val()*rot1,a2=(unsigned long long)a[i+of+p*2].val()*rot2,a3=(unsigned long long)a[i+of+p*3].val()*rot3;
          const unsigned long long m=(unsigned long long)T(a1+mod2-a3).val()*imag.val();
          const unsigned long long k=mod2-a2;
          a[i+of]=a0+a2+a1+a3;
          a[i+of+p]=a0+a2+(mod2*2-a1-a3);
          a[i+of+p*2]=a0+k+m;
          a[i+of+p*3]=a0+k+(mod2-m);
        }
        rot*=T::raw(r.rate3[lsb(~(unsigned int)s)]);
      }
      len+=2;
    }
  }
}
template<typename T>
void idft(std::vector<T>&a){
  static constexpr ntt_root<T::mod()>r;
  static constexpr unsigned long long mod2=(unsigned long long)T::mod()*T::mod();
  int n=a.size();
  int h=lsb(n);
  int len=h;
  while(len){
    if(len==1){
      int p=1<<(h-1);
      for(int i=0;i<p;i++){
        T u=a[i],v=a[i+p];
        a[i]=u+v;
        a[i+p]=u-v;
      }
      len--;
    }
    else{
      int p=1<<(h-len);
      T rot=T::raw(1),imag=T::raw(r.invroot[2]);
      for(int s=0;s<(1<<(len-2));s++){
        const unsigned long long rot1=rot.val(),rot2=rot1*rot1%T::mod(),rot3=rot1*rot2%T::mod();
        int of=s<<(h-len+2);
        for(int i=0;i<p;i++){
          const unsigned long long a0=a[i+of].val(),a1=a[i+of+p].val(),a2=a[i+of+p*2].val(),a3=a[i+of+p*3].val();
          const unsigned long long k=T((T::mod()+a2-a3)*imag.val()).val();
          a[i+of]=a0+a1+a2+a3;
          a[i+of+p]=(a0+T::mod()-a1+k)*rot1;
          a[i+of+p*2]=(a0+a1+T::mod()*2-a2-a3)*rot2;
          a[i+of+p*3]=(a0+T::mod()*2-a1-k)*rot3;
        }
        rot*=T::raw(r.invrate3[lsb(~(unsigned int)s)]);
      }
      len-=2;
    }
  }
}
template<typename T>
std::vector<T>ntt_convolution(std::vector<T> a,std::vector<T> b){
  int n=a.size(),m=b.size(),s=n+m-1;
  if(std::min(n,m)<60){
    std::vector<T>ret(s,0);
    if(n<m)for(int i=0;i<m;i++)for(int j=0;j<n;j++)ret[i+j]+=a[j]*b[i];
    else for(int i=0;i<n;i++)for(int j=0;j<m;j++)ret[i+j]+=a[i]*b[j];
    return ret;
  }
  int z=ceil_pow2(s);
  a.resize(z,0);
  b.resize(z,0);
  dft(a),dft(b);
  std::vector<T>c(z);
  for(int i=0;i<z;i++)c[i]=a[i]*b[i];
  idft(c);
  T g=T::raw(z).inv();
  for(int i=0;i<s;i++)c[i]*=g;
  return {c.begin(),c.begin()+s};
}
template<typename T>
void ntt_doubling(std::vector<T>&a){
  static constexpr ntt_root<T::mod()>r;
  int n=a.size()/2;
  std::vector<T>b(a.begin(),a.begin()+n);
  idft(b);
  T now=T::raw(n).inv(),zeta=T::raw(r.root[msb(n)+1]);
  for(int i=0;i<n;i++){
    b[i]*=now;
    now*=zeta;
  }
  dft(b);
  std::copy(b.begin(),b.end(),a.begin()+n);
}
template<typename T>
T bostan_mori(std::vector<T> p,std::vector<T> q,long long k){
  assert(p.size()<q.size());
  static constexpr ntt_root<T::mod()>r;
  int n=ceil_pow2((int)q.size()*2-1);
  p.resize(n,T::raw(0));
  q.resize(n,T::raw(0));
  dft(p),dft(q);
  T inv2=T::raw(2).inv();
  int n2=n/2;
  while(k){
    for(int i=0;i<n;i++)p[i]*=q[i^1];
    if(k&1){
      T prod=T::raw(1);
      for(int i=0;i<n2;i++){
        p[i]=(p[i*2]-p[i*2+1])*inv2*prod;
        prod*=r.invrate2[lsb(~i)];
      }
    }
    else{
      for(int i=0;i<n2;i++){
        p[i]=(p[i*2]+p[i*2+1])*inv2;
      }
    }
    for(int i=0;i<n2;i++)q[i]=q[i*2]*q[i*2+1];
    ntt_doubling(p),ntt_doubling(q);
    k>>=1;
  }
  idft(p);
  return p[0]/T::raw(n);
}
#include<optional>
unsigned long long binary_gcd(unsigned long long a,unsigned long long b){
  if(a==0||b==0||a==b)return a<b?b:a;
  int n=lsb(a),m=lsb(b);
  while(a!=b){
    if(a>b)a=(a-b)>>lsb(a-b);
    else b=(b-a)>>lsb(b-a);
  }
  return a<<(n<m?n:m);
}
struct BarrettReduction{
private:
  using i64=long long;
  using u64=unsigned long long;
  using u32=unsigned int;
  using u128=__uint128_t;
  u32 m;
  u64 im;
public:
  BarrettReduction():m(0),im(0){}
  BarrettReduction(u32 n):m(n),im(u64(-1)/n+1){}
  inline i64 quo(u64 x)const{
    if(m==1)return x;
    u64 y=u64((u128(x)*im)>>64);
    u32 r=x-y*m;
    return m<=r?y-1:y;
  }
  inline u32 rem(u64 x)const{
    if(m==1)return 0;
    u64 y=u64((u128(x)*im)>>64);
    u32 r=x-y*m;
    return m<=r?r+m:r;
  }
  inline std::pair<u64,u32>quo_rem(u64 x)const{
    if(m==0)return std::make_pair(x,0);
    u64 y=u64((u128(x)*im)>>64);
    u32 r=x-y*m;
    return m<=r?std::make_pair(y-1,r+m):std::make_pair(y,r);
  }
  inline u32 pow(u32 a,u64 p)const{
    u32 res=m!=1;
    while(p){
      if(p&1)res=rem(u64(res)*a);
      a=rem(u64(a)*a);
      p>>=1;
    }
    return res;
  }
};
namespace prime_impl{
constexpr int table_size=1<<16;
bool table[table_size];
struct prime_table_init{
  prime_table_init(){
    table[0]=table[1]=true;
    for(int i=2;i<table_size;i++)if(!table[i]){
      for(int j=i*2;j<table_size;j+=i)table[j]=true;
    }
  }
}dummy;
}
bool isprime(unsigned long long n)noexcept{
  if(n<prime_impl::table_size)return !prime_impl::table[n];
  if(n%2==0)return false;
  if(n<(1ull<<31)){
    BarrettReduction br(n);
    unsigned long long d=n-1;
    while(!(d&1))d>>=1;
    for(unsigned long long base:{2,7,61}){
      unsigned long long t=d;
      unsigned long long y=1;
      while(t>0){
        if(t&1)y=br.rem(y*base);
        base=br.rem(base*base);
        t>>=1;
      }
      t=d;
      while(t!=n-1&&y!=1&&y!=n-1){
        y=br.rem(y*y);
        t<<=1;
      }
      if(y!=n-1&&t%2==0)return false;
    }
    return true;
  }
  unsigned long long d=n-1;
  int s=0;
  while(!(d&1))d>>=1,s++;
  int q=63;
  while(!(d>>q))q--;
  unsigned long long r=n;
  for(int i=0;i<5;i++)r*=2-r*n;
  auto redc=[&r,&n](__uint128_t x)->unsigned long long {
    x=(x+__uint128_t((unsigned long long)x*-r)*n)>>64;
    return x>=n?x-n:x;
  };
  __uint128_t r2=-__uint128_t(n)%n;
  unsigned long long one=redc(r2);
  for(unsigned long long base:{2,325,9375,28178,450775,9780504,1795265022}){
    if(base%n==0)continue;
    unsigned long long a=base=redc((base%n)*r2);
    for(int i=q-1;i>=0;i--){
      a=redc(__uint128_t(a)*a);
      if(d>>i&1)a=redc(__uint128_t(a)*base);
    }
    if(a==one)continue;
    for(int i=1;a!=n-one;i++){
      if(i>=s)return false;
      a=redc(__uint128_t(a)*a);
    }
  }
  return true;
}
std::vector<unsigned long long>factorize(unsigned long long n)noexcept{
  std::vector<unsigned long long>ret;
  auto div=[](unsigned long long x)noexcept->unsigned long long {
    unsigned long long r=x;
    for(int i=0;i<5;i++)r*=2-r*x;
    unsigned long long r2=-__uint128_t(x)%x;
    auto redc=[&r,&x](__uint128_t t)->unsigned long long {
      t=(t+__uint128_t((unsigned long long)t*-r)*x)>>64;
      return t>=x?t-x:t;
    };
    unsigned long long a=0,b=0;
    const unsigned long long one=redc(r2);
    unsigned long long e=one;
    unsigned long long m=1ll<<((63-__builtin_clzll(x))>>3);
    while(true){
      unsigned long long ca=a,cb=b;
      unsigned long long sk=one;
      for(int i=0;i<m;i++){
        a=redc(__uint128_t(a)*a+e);
        b=redc(__uint128_t(b)*b+e);
        b=redc(__uint128_t(b)*b+e);
        unsigned long long c=redc(a),d=redc(b);
        sk=redc(__uint128_t(sk)*(c>d?c-d:d-c));
      }
      unsigned long long g=binary_gcd(redc(sk),x);
      if(g>1){
        if(g<x)return g;
        for(int i=0;i<m;i++){
          ca=redc(__uint128_t(ca)*ca+e);
          cb=redc(__uint128_t(cb)*cb+e);
          cb=redc(__uint128_t(cb)*cb+e);
          unsigned long long c=redc(ca),d=redc(cb);
          unsigned long long cg=binary_gcd(c>d?c-d:d-c,x);
          if(cg>1){
            if(cg<x)return cg;
            else{
              e+=one;
              a=b=0;
              break;
            }
          }
        }
      }
    }
  };
  static unsigned long long st[64];
  int p=0;
  while(!(n&1)){
    n>>=1;
    ret.push_back(2);
  }
  if(n==1)return ret;
  st[p++]=n;
  while(p){
    unsigned long long now=st[--p];
    if(isprime(now)){
      ret.push_back(now);
      continue;
    }
    unsigned long long d=div(now);
    st[p++]=d;
    now/=d;
    if(now!=1)st[p++]=now;
  }
  return ret;
}
template<typename T>
std::enable_if_t<std::is_integral_v<T>,T>carmichael(T n){
  auto f=factorize(n);
  std::sort(f.begin(),f.end());
  T res=1;
  for(int l=0,r=0;l<f.size();l=r){
    while(r<f.size()&&f[l]==f[r])r++;
    if(f[l]==2){
      if(r-l==2)res=2;
      else if(r-l>=3)res=T(1)<<(r-l-2);
    }
    else{
      T prod=f[l]-1;
      for(int i=0;i<r-l-1;i++)prod*=f[l];
      res=std::lcm(res,prod);
    }
  }
  return res;
}
constexpr int carmichael_constexpr(int n){
  if(n==998244353)return 998244352;
  if(n==1000000007)return 1000000006;
  if(n<=1)return n;
  int res=1;
  int t=0;
  while(n%2==0){
    n/=2;
    t++;
  }
  if(t==2)res=2;
  else if(t>=3)res=1<<(t-2);
  for(int i=3;i*i<=n;i++)if(n%i==0){
    int c=0;
    while(n%i==0){
      n/=i;
      c++;
    }
    int prod=i-1;
    for(int j=0;j<c-1;j++)prod*=i;
    res=std::lcm(res,prod);
  }
  if(n!=1)res=std::lcm(res,n-1);
  return res;
}
template<int m>
struct mod_int{
private:
  static constexpr unsigned int umod=static_cast<unsigned int>(m);
  static constexpr unsigned int car=carmichael_constexpr(m);
  using uint=unsigned int;
  using mint=mod_int;
  uint v;
  static_assert(m<uint(1)<<31);
  mint sqrt_impl()const{
    if(this->val()<=1)return *this;
    if constexpr(m%8==1){
      mint b=2;
      while(b.pow((m-1)/2).val()==1)b++;
      int m2=m-1,e=0;
      while(m2%2==0)m2>>=1,e++;
      mint x=this->pow((m2-1)/2);
      mint y=(*this)*x*x;
      x*=*this;
      mint z=b.pow(m2);
      while(y.val()!=1){
        int j=0;
        mint t=y;
        while(t.val()!=1)t*=t,j++;
        z=z.pow(1<<(e-j-1));
        x*=z;
        z*=z;
        y*=z;e=j;
      }
      return x;
    }
    else if constexpr(m%8==5){
      mint ret=this->pow((m+3)/8);
      if((ret*ret).val()==this->val())return ret;
      else return ret*mint::raw(2).pow((m-1)/4);
    }
    else{
      return this->pow((m+1)/4);
    }
  }
public:
  using value_type=uint;
  mod_int():v(0){}
  template<typename T,std::enable_if_t<std::is_signed_v<T>,std::nullptr_t> =nullptr>
  mod_int(T a){
    a%=m;
    if(a<0)v=a+umod;
    else v=a;
  }
  template<typename T,std::enable_if_t<std::is_unsigned_v<T>,std::nullptr_t> =nullptr>
  mod_int(T a):v(a%umod){}
  static constexpr mint raw(int a){
    mint ret;
    ret.v=a;
    return ret;
  }
  inline uint val()const{return this->v;}
  static constexpr int mod(){return m;}
  inline mint &operator+=(const mint &b){
    this->v+=b.v;
    if(this->v>=umod)this->v-=umod;
    return *this;
  }
  inline mint &operator-=(const mint &b){
    this->v-=b.v;
    if(this->v>=umod)this->v+=umod;
    return *this;
  }
  inline mint &operator*=(const mint &b){
    this->v=((unsigned long long)this->v*b.v)%umod;
    return *this;
  }
  inline mint &operator/=(const mint &b){
    *this*=b.inv();
    return *this;
  }
  inline mint operator+()const{return *this;}
  inline mint operator-()const{return mint()-*this;}
  friend inline mint operator+(const mint &a,const mint &b){return mint(a)+=b;}
  friend inline mint operator-(const mint &a,const mint &b){return mint(a)-=b;}
  friend inline mint operator*(const mint &a,const mint &b){return mint(a)*=b;}
  friend inline mint operator/(const mint &a,const mint &b){return mint(a)/=b;}
  friend inline bool operator==(const mint &a,const mint &b){return a.val()==b.val();}
  friend inline bool operator!=(const mint &a,const mint &b){return !(a==b);}
  inline mint operator++(int){
    mint ret=*this;
    *this+=1;
    return ret;
  }
  inline mint operator--(int){
    mint ret=*this;
    *this-=1;
    return ret;
  }
  mint pow(long long n)const{
    mint ret=mint::raw(1),a(*this);
    while(n){
      if(n&1)ret*=a;
      a*=a;
      n>>=1;
    }
    return ret;
  }
  inline mint inv()const{
    assert(this->v!=0);
    return pow(car-1);
  }
  std::optional<mint>sqrt()const{
    if(this->val()<=1||this->pow((m-1)/2)==1)return std::make_optional(this->sqrt_impl());
    else return std::nullopt;
  }
  static constexpr unsigned int order(){return car;}
  friend std::istream &operator>>(std::istream &is,mint &b){
    long long a;
    is>>a;
    b=mint(a);
    return is;
  }
  friend std::ostream &operator<<(std::ostream &os,const mint &b){
    os<<b.val();
    return os;
  }
};
template<int m>
struct std::hash<mod_int<m>>{
  std::size_t operator()(mod_int<m>x)const{
    return std::hash<unsigned int>()(x.val());
  }
};
using mint998=mod_int<998244353>;
using mint107=mod_int<1000000007>;
using mint=mint998;
void SOLVE(){
  int n,m;
  cin>>n>>m;
  vector<pair<vector<mint>,vector<mint>>>poly(m);
  rep(i,1,m+1){
    vector<mint>a(i+1),b(i+2);
    a[1]++;
    a[i]--;
    b[0]++;
    b[i]-=2;
    b[i+1]++;
    poly[i-1]={a,b};
  }
  auto add=[](const pair<vector<mint>,vector<mint>>&lhs,const pair<vector<mint>,vector<mint>>&rhs)->pair<vector<mint>,vector<mint>> {
    vector<mint>a=ntt_convolution(lhs.second,rhs.second);
    vector<mint>b=ntt_convolution(lhs.first,rhs.second);
    vector<mint>c=ntt_convolution(lhs.second,rhs.first);
    if(b.size()>c.size())swap(b,c);
    rep(i,b.size())c[i]+=b[i];
    return {c,a};
  };
  for(int i=poly.size();--i;)poly[i/2]=add(poly[i/2],poly[i]);
  auto [a,b]=poly[0];
  vector<mint>p(b);
  if(a.size()>b.size())b.resize(a.size());
  rep(i,a.size())b[i]-=a[i];
  if(p.size()>=b.size())b.resize(p.size()+1);
  cout<<bostan_mori(p,b,n)<<endl;
}
0