結果
問題 | No.2983 Christmas Color Grid (Advent Calender ver.) |
ユーザー |
|
提出日時 | 2024-12-08 18:38:35 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,884 ms / 3,340 ms |
コード長 | 55,276 bytes |
コンパイル時間 | 5,872 ms |
コンパイル使用メモリ | 291,916 KB |
最終ジャッジ日時 | 2025-02-26 11:36:19 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 64 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用// 警告の抑制#define _CRT_SECURE_NO_WARNINGS// ライブラリの読み込み#include <bits/stdc++.h>using namespace std;// 型名の短縮using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;using Graph = vvi;// 定数の定義const double PI = acos(-1);int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)int DY[4] = { 0, 1, 0, -1 };int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;// 入出力高速化struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;// 汎用マクロの定義#define all(a) (a).begin(), (a).end()#define sz(x) ((int)(x).size())#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定// 汎用関数の定義template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら trueを返す)template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら trueを返す)template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod// 演算子オーバーロードtemplate <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }#endif // 折りたたみ用#if __has_include(<atcoder/all>)#include <atcoder/all>using namespace atcoder;#ifdef _MSC_VER#include "localACL.hpp"#endif//using mint = modint998244353;//using mint = static_modint<1000000007>;using mint = modint; // mint::set_mod(m);namespace atcoder {inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }}using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;#endif#ifdef _MSC_VER // 手元環境(Visual Studio)#include "local.hpp"#else // 提出用(gcc)inline int popcount(int n) { return __builtin_popcount(n); }inline int popcount(ll n) { return __builtin_popcountll(n); }inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }#define dump(...)#define dumpel(...)#define dump_list(v)#define dump_mat(v)#define input_from_file(f)#define output_to_file(f)#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す#endif//【mint → 有理数】(実験用)/** x を分母と分子の絶対値が v_max 以下の有理数表示に変換する(不可能ならそのまま)*/string mint_to_frac(mint x, int v_max = 31595) {// verify : https://www.codechef.com/problems/SUMOVERALLrepi(dnm, 1, v_max) {int num = (x * dnm).val();if (num == 0) {return "0";}if (num <= v_max) {if (dnm == 1) return to_string(num);return to_string(num) + "/" + to_string(dnm);}if (mint::mod() - num <= v_max) {if (dnm == 1) return "-" + to_string(mint::mod() - num);return "-" + to_string(mint::mod() - num) + "/" + to_string(dnm);}}return to_string(x.val());}// さすがに間に合わない.ていうか思いっきり誤読してた.void WA() {int h, w; ll k; int m;cin >> h >> w >> k >> m;mint::set_mod(m);dump(mint_to_frac(499122177));dump(mint_to_frac(249561091)); // 11/4dump(0 + 1 + 1 + 1 + (1 + 1) + 4 + 4 + 9);int n = h * w;vm pow_i(n + 1);repi(i, 0, n) pow_i[i] = mint(i).pow(k);mint res = 0;repb(set, n) {dsu d(n); mint val = 0;rep(i, h) rep(j, w - 1) {if (!getb(set, i * w + j)) continue;if (!getb(set, i * w + (j + 1))) continue;d.merge(i * w + j, i * w + (j + 1));}rep(i, h - 1) rep(j, w) {if (!getb(set, i * w + j)) continue;if (!getb(set, (i + 1) * w + j)) continue;d.merge(i * w + j, (i + 1) * w + j);}auto gs = d.groups();repe(g, gs) {if (sz(g) == 1 && !getb(set, g[0])) continue;val += pow_i[sz(g)];}// dump(set, val);res += val;}res /= mint(2).pow(n);EXIT(res);}//【累乗(mint 利用)】/** Pow_mint(mint B, int n) : O(n)* 底を B とし,B^0 から B^n まで計算可能として初期化する.** build_neg() : O(n)* B^(-1) から B^(-n) も計算可能にする.* 制約 : B は mint の法と互いに素** mint [](int i) : O(1)* B^i を返す.*/class Pow_mint {int n;vm powB, powB_inv;public:Pow_mint(mint B, int n) : n(max(n, 2)) {// verify : https://yukicoder.me/problems/no/2709// B の累乗を計算する.powB.resize(n + 1);powB[0] = 1;rep(i, n) powB[i + 1] = powB[i] * B;};Pow_mint() : n(0) {}// 負冪も計算できるようにする.void build_neg() {// verify : https://atcoder.jp/contests/arc116/tasks/arc116_b// B の逆元の累乗を計算する.mint invB = powB[1].inv();powB_inv.resize(n + 1);powB_inv[0] = 1;rep(i, n) powB_inv[i + 1] = powB_inv[i] * invB;}// B^i を返す.mint const& operator[](int i) const {// verify : https://atcoder.jp/contests/arc116/tasks/arc116_bAssert(abs(i) <= n);return i >= 0 ? powB[i] : powB_inv[-i];}#ifdef _MSC_VERfriend ostream& operator<<(ostream& os, const Pow_mint& pw) {os << pw.powB << endl;os << pw.powB_inv << endl;return os;}#endif};// AC51, TLE16.後は高速化だけだmint TLE(int h, int w, ll k, int m) {mint::set_mod(m);int n = h * w;vm pow_i(n + 1);repi(i, 0, n) pow_i[i] = mint(i).pow(k);vvm bin(n + 1, vm(n + 1));bin[0][0] = 1;repi(i, 1, n) repi(j, 0, i) {if (j > 0) bin[i][j] += bin[i - 1][j - 1];if (j < i) bin[i][j] += bin[i - 1][j];}vvm bin_inv(n + 1, vm(n + 1));repi(i, 0, n) repi(j, 0, i) {bin_inv[i][j] = bin[i][j].inv();}Pow_mint pow2(2, n);pow2.build_neg();vm inv(n + 1);repi(i, 1, n) inv[i] = mint(i).inv();mint res = 0;// ひとまず bit 全探索.もしや連結 DP 的なことしないとだめ?repb(set, n) {if (set == 0) continue;vvi a(h, vi(w));rep(i, h) rep(j, w) a[i][j] = getb(set, i * w + j);dsu d(n); int x0 = 0, y0 = 0;rep(i, h) rep(j, w - 1) {if (!a[i][j]) continue;x0 = i, y0 = j;if (!a[i][j + 1]) continue;d.merge(i * w + j, i * w + (j + 1));}rep(i, h - 1) rep(j, w) {if (!a[i][j]) continue;x0 = i, y0 = j;if (!a[i + 1][j]) continue;d.merge(i * w + j, (i + 1) * w + j);}int pc = popcount(set);if (d.size(x0 * w + y0) != pc) continue;rep(i, h) {rep(j, w - 1) {if (a[i][j] != 0) continue;if (a[i][j + 1] == 1) a[i][j] = -1;}repi(j, 1, w - 1) {if (a[i][j] != 0) continue;if (a[i][j - 1] == 1) a[i][j] = -1;}}rep(j, w) {rep(i, h - 1) {if (a[i][j] != 0) continue;if (a[i + 1][j] == 1) a[i][j] = -1;}repi(i, 1, h - 1) {if (a[i][j] != 0) continue;if (a[i - 1][j] == 1) a[i][j] = -1;}}int cnt = 0;rep(i, h) rep(j, w) cnt += a[i][j] != 0;repi(k, 1, n) {mint p0 = bin_inv[n][k] * pow2[-k];mint w1 = pow2[k - cnt] * bin[n][k] * inv[n - k + 1];res += p0 * w1 * pow_i[pc];}}return res;}//【有理数】/** Frac<T>() : O(1)* 0 で初期化する.* 制約:T は int, ll, __int128, boost::multiprecision::int256_t 等** Frac<T>(T num) : O(1)* num で初期化する.** Frac<T>(T num, T dnm) : O(1)* num / dnm で初期化する(分母は自動的に正にする)** a == b, a != b, a < b, a > b, a <= b, a >= b : O(1)* 大小比較を行う(分母が共通の場合は積はとらない)** a + b, a - b, a * b, a / b : O(1)* 加減乗除を行う(和と差については,分母が共通の場合は積はとらない)* 一方が整数でも構わない.複合代入演算子も使用可.** reduction() : O(log min(num, dnm))* 自身の約分を行う.** together(Frac& a, Frac& b) : O(log min(a.dnm, b.dnm))* a と b を通分する.** together(vector<Frac>& as) : O(|as| log dnm)* as を通分する.** T floor() : O(1)* 自身の floor を返す.** T ceil() : O(1)* 自身の ceil を返す.** bool integerQ() : O(1)* 自身が整数かを返す.*/template <class T = ll>struct Frac {// 分子,分母T num, dnm;// コンストラクタFrac() : num(0), dnm(1) {}Frac(T num) : num(num), dnm(1) {}Frac(T num_, T dnm_) : num(num_), dnm(dnm_) {// verify : https://atcoder.jp/contests/abc244/tasks/abc244_hAssert(dnm != 0);if (dnm < 0) { num *= -1; dnm *= -1; }}// 代入Frac(const Frac& b) = default;Frac& operator=(const Frac& b) = default;// キャストoperator double() const { return (double)num / (double)dnm; }// 比較bool operator==(const Frac& b) const {// 分母が等しいときはオーバーフロー防止のために掛け算はせず比較する.if (dnm == b.dnm) return num == b.num;return num * b.dnm == b.num * dnm;}bool operator!=(const Frac& b) const { return !(*this == b); }bool operator<(const Frac& b) const {// verify : https://atcoder.jp/contests/abc308/tasks/abc308_c// 分母が等しいときはオーバーフロー防止のために掛け算はせず比較する.if (dnm == b.dnm) return num < b.num;return (num * b.dnm < b.num * dnm);}bool operator>=(const Frac& b) const { return !(*this < b); }bool operator>(const Frac& b) const { return b < *this; }bool operator<=(const Frac& b) const { return !(*this > b); }// 整数との比較bool operator==(T b) const { return num == b * dnm; }bool operator!=(T b) const { return num != b * dnm; }bool operator<(T b) const { return num < b * dnm; }bool operator>=(T b) const { return num >= b * dnm; }bool operator>(T b) const { return num > b * dnm; }bool operator<=(T b) const { return num <= b * dnm; }friend bool operator==(T a, const Frac& b) { return a * b.dnm == b.num; }friend bool operator!=(T a, const Frac& b) { return a * b.dnm != b.num; }friend bool operator<(T a, const Frac& b) { return a * b.dnm < b.num; }friend bool operator>=(T a, const Frac& b) { return a * b.dnm >= b.num; }friend bool operator>(T a, const Frac& b) { return a * b.dnm > b.num; }friend bool operator<=(T a, const Frac& b) { return a * b.dnm <= b.num; }// 四則演算Frac& operator+=(const Frac& b) {// verify : https://www.codechef.com/problems/ARCTR// 分母が等しいときはオーバーフロー防止のために掛け算はせず加算する.if (dnm == b.dnm) num += b.num;else { num = num * b.dnm + b.num * dnm; dnm *= b.dnm; }return *this;}Frac& operator-=(const Frac& b) {// verify : https://www.codechef.com/problems/ARCTR// 分母が等しいときはオーバーフロー防止のために掛け算はせず加算する.if (dnm == b.dnm) num -= b.num;else { num = num * b.dnm - b.num * dnm; dnm *= b.dnm; }return *this;}Frac& operator*=(const Frac& b) { num *= b.num; dnm *= b.dnm; return *this; }Frac& operator/=(const Frac& b) {// verify : https://atcoder.jp/contests/abc301/tasks/abc301_gAssert(b.num != 0);num *= b.dnm; dnm *= b.num;if (dnm < 0) { num *= -1; dnm *= -1; }return *this;}Frac operator+(const Frac& b) const { Frac a = *this; return a += b; }Frac operator-(const Frac& b) const { Frac a = *this; return a -= b; }Frac operator*(const Frac& b) const { Frac a = *this; return a *= b; }Frac operator/(const Frac& b) const { Frac a = *this; return a /= b; }Frac operator-() const { return Frac(*this) *= Frac(-1); }// 整数との四則演算Frac& operator+=(T c) { num += dnm * c; return *this; }Frac& operator-=(T c) { num -= dnm * c; return *this; }Frac& operator*=(T c) { num *= c; return *this; }Frac& operator/=(T c) {Assert(c != T(0));dnm *= c;if (dnm < 0) { num *= -1; dnm *= -1; }return *this;}Frac operator+(T c) const { Frac a = *this; return a += c; }Frac operator-(T c) const { Frac a = *this; return a -= c; }Frac operator*(T c) const { Frac a = *this; return a *= c; }Frac operator/(T c) const { Frac a = *this; return a /= c; }friend Frac operator+(T c, const Frac& a) { return a + c; }friend Frac operator-(T c, const Frac& a) { return Frac(c) - a; }friend Frac operator*(T c, const Frac& a) { return a * c; }friend Frac operator/(T c, const Frac& a) { return Frac(c) / a; }// 約分を行う.void reduction() {// verify : https://atcoder.jp/contests/abc229/tasks/abc229_hauto g = gcd(num, dnm);num /= g; dnm /= g;}// a と b を通分する.friend void together(Frac& a, Frac& b) {// verify : https://atcoder.jp/contests/abc229/tasks/abc229_hT dnm = lcm(a.dnm, b.dnm);a.num *= dnm / a.dnm; a.dnm = dnm;b.num *= dnm / b.dnm; b.dnm = dnm;}// as を通分する.friend void together(vector<Frac>& as) {// verify : https://yukicoder.me/problems/617T dnm = 1;repe(a, as) dnm = lcm(dnm, a.dnm);repea(a, as) {a.num *= dnm / a.dnm;a.dnm = dnm;}}// 自身の floor を返す.T floor() const {// verify : https://www.codechef.com/problems/LINEFIT?tab=statementif (num >= 0) return num / dnm;else return -((-num + dnm - 1) / dnm);}// 自身の ceil を返す.T ceil() const {// verify : https://www.codechef.com/problems/LINEFIT?tab=statementif (num >= 0) return (num + dnm - 1) / dnm;else return -((-num) / dnm);}// 自身が整数かを返す.bool integerQ() const {// verify : https://atcoder.jp/contests/ttpc2022/tasks/ttpc2022_greturn num % dnm == 0;}#ifdef _MSC_VERfriend ostream& operator<<(ostream& os, const Frac& a) { os << a.num << '/' << a.dnm; return os; }#endif};using F = Frac<ll>;vector<F> umekomi_sub(int h, int w) {int n = h * w;vvl bin(n + 1, vl(n + 1));bin[0][0] = 1;repi(i, 1, n) repi(j, 0, i) {if (j > 0) bin[i][j] += bin[i - 1][j - 1];if (j < i) bin[i][j] += bin[i - 1][j];}vector<F> coef(n + 1);repb(set, n) {if (set == 0) continue;vvi a(h, vi(w));rep(i, h) rep(j, w) a[i][j] = getb(set, i * w + j);dsu d(n); int x0 = 0, y0 = 0;rep(i, h) rep(j, w - 1) {if (!a[i][j]) continue;x0 = i, y0 = j;if (!a[i][j + 1]) continue;d.merge(i * w + j, i * w + (j + 1));}rep(i, h - 1) rep(j, w) {if (!a[i][j]) continue;x0 = i, y0 = j;if (!a[i + 1][j]) continue;d.merge(i * w + j, (i + 1) * w + j);}int pc = popcount(set);if (d.size(x0 * w + y0) != pc) continue;rep(i, h) {rep(j, w - 1) {if (a[i][j] != 0) continue;if (a[i][j + 1] == 1) a[i][j] = -1;}repi(j, 1, w - 1) {if (a[i][j] != 0) continue;if (a[i][j - 1] == 1) a[i][j] = -1;}}rep(j, w) {rep(i, h - 1) {if (a[i][j] != 0) continue;if (a[i + 1][j] == 1) a[i][j] = -1;}repi(i, 1, h - 1) {if (a[i][j] != 0) continue;if (a[i - 1][j] == 1) a[i][j] = -1;}}int cnt = 0;rep(i, h) rep(j, w) cnt += a[i][j] != 0;repi(t, 1, n) {coef[pc] += F(1, (ll)(n - t + 1) << cnt);coef[pc].reduction();}}return coef;}int N = 25;void umekomi() {cout << "vvl coef = {" << endl;repi(h, 1, N) repi(w, 1, min(N / h, h)) {dump(h, w);auto c = umekomi_sub(h, w);int n = sz(c);cout << "{";rep(i, n) {cout << c[i].num << "," << c[i].dnm << ",}"[i == n - 1];}cout << "," << endl;}cout << "};" << endl;}// 負の数が見えるのでどうみてもオーバーフローしているvvl coef = {// 削除};// 埋め込み計算がオーバーフローしているmint WA(int h0, int w0, ll k, int m) {mint::set_mod(m);if (h0 < w0) swap(h0, w0);int pt = 0;repi(h, 1, N) repi(w, 1, min(N / h, h)) {if (h == h0 && w == w0) {auto c = coef[pt];mint res = 0;rep(t, sz(c) / 2) {res += mint(t).pow(k) * c[2 * t + 0] / c[2 * t + 1];}return res;}pt++;}return -1;}vector<vector<F>> umekomi2_sub(int h, int w) {int n = h * w;vvl bin(n + 1, vl(n + 1));bin[0][0] = 1;repi(i, 1, n) repi(j, 0, i) {if (j > 0) bin[i][j] += bin[i - 1][j - 1];if (j < i) bin[i][j] += bin[i - 1][j];}vector<vector<F>> coef(n + 1, vector<F>(n + 1));repb(set, n) {if (set == 0) continue;vvi a(h, vi(w));rep(i, h) rep(j, w) a[i][j] = getb(set, i * w + j);dsu d(n); int x0 = 0, y0 = 0;rep(i, h) rep(j, w - 1) {if (!a[i][j]) continue;x0 = i, y0 = j;if (!a[i][j + 1]) continue;d.merge(i * w + j, i * w + (j + 1));}rep(i, h - 1) rep(j, w) {if (!a[i][j]) continue;x0 = i, y0 = j;if (!a[i + 1][j]) continue;d.merge(i * w + j, (i + 1) * w + j);}int pc = popcount(set);if (d.size(x0 * w + y0) != pc) continue;rep(i, h) {rep(j, w - 1) {if (a[i][j] != 0) continue;if (a[i][j + 1] == 1) a[i][j] = -1;}repi(j, 1, w - 1) {if (a[i][j] != 0) continue;if (a[i][j - 1] == 1) a[i][j] = -1;}}rep(j, w) {rep(i, h - 1) {if (a[i][j] != 0) continue;if (a[i + 1][j] == 1) a[i][j] = -1;}repi(i, 1, h - 1) {if (a[i][j] != 0) continue;if (a[i - 1][j] == 1) a[i][j] = -1;}}int cnt = 0;rep(i, h) rep(j, w) cnt += a[i][j] != 0;repi(t, 1, n) {coef[pc][n - t + 1] += F(1, 1LL << cnt);coef[pc][n - t + 1].reduction();}}return coef;}int N2 = 25;void umekomi2() {cout << "vvl coef2 = {" << endl;repi(h, 1, N2) repi(w, 1, min(N2 / h, h)) {if (h * w <= 21) continue;dump(h, w);auto c = umekomi2_sub(h, w);int n = h * w;cout << "{";repi(i, 0, n) repi(j, 1, n) {cout << c[i][j].num << "," << msb(c[i][j].dnm) << ",}"[i == n && j == n];}cout << "," << endl;}cout << "};" << endl;}vvl coef2 = {{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,49,5,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,33,6,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,351,10,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,473,11,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,1367,13,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,4259,15,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,27847,18,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,188985,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,162693,21,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,70785,20,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,985987,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,851699,24,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,362115,23,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,597493,24,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,234759,23,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,687581,25,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,113613,23,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,129157,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,59591,24,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,42437,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,11295,25,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,137,21,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,37,22,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,65,7,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,173,9,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,1883,13,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,699,12,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,8941,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,7297,16,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,194155,21,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,81199,20,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,545325,23,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,14365,18,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,774295,24,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,80375,21,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,129493,22,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,24659,20,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,274893,24,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,20933,21,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,41947,23,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,8123,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,2329,22,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,15,17,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,137,8,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,47,7,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,4455,14,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,13819,16,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,171781,20,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,267005,21,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,1652625,24,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,634897,23,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,973997,24,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,373181,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,287421,23,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,111507,22,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,347449,24,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,33255,21,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,96161,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,62075,23,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,66909,24,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,3509,21,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,4327,23,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,469,22,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,17,20,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,41,6,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,67,7,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,91,8,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,485,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,335,11,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,3603,15,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,4873,16,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,26177,19,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,2187,16,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,11631,19,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,15,10,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,5041,19,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,1655,18,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,2203,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,1459,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,869,19,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,3217,22,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,511,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,101,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,11,21,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,9,4,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,197,9,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,263,10,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,1461,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,987,13,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,10739,17,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,14517,18,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,78193,21,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,26213,20,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,34957,21,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,5793,19,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,15261,21,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,5007,20,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,6611,21,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,275,17,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,1401,20,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,95,17,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,4967,24,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,347,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,61,22,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,3,0,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,23,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,21,6,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,19,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,9,8,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,17,10,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,7,12,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,13,14,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,11,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,5,16,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,9,18,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,7,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,3,20,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,5,22,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,21,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,25,3,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,11,5,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,6,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,7,13,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,13,15,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,3,14,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,11,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,5,17,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,9,19,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,1,17,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,7,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,3,21,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,5,23,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,22,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,13,2,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,25,4,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,23,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,11,6,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,21,8,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,19,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,9,10,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,17,12,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,7,14,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,13,16,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,3,15,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,11,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,5,18,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,9,20,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,1,18,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,7,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,3,22,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,5,24,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,23,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24},{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,27,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,13,3,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,11,7,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,5,8,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,9,11,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,13,17,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,3,16,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,11,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,5,19,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,9,21,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,7,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,3,23,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,5,25,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,24,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25,1,25}};mint solve(int h0, int w0, ll k, int m) {if (h0 * w0 <= 21) return TLE(h0, w0, k, m);mint::set_mod(m);if (h0 < w0) swap(h0, w0);int pt = 0;repi(h, 1, N) repi(w, 1, min(N / h, h)) {if (h * w <= 21) continue;if (h == h0 && w == w0) {auto c = coef2[pt];int n = h * w;mint res = 0; pt = 0;repi(i, 0, n) repi(j, 1, n) {mint val = mint(i).pow(k);val *= c[pt++];val /= 1LL << c[pt++];val /= j;res += val;}return res;}pt++;}return -1;}int main() {input_from_file("input.txt");output_to_file("output.txt");// umekomi2(); return 0;int h, w; ll k; int m;cin >> h >> w >> k >> m;dump(TLE(h, w, k, m));EXIT(solve(h, w, k, m));}