結果
問題 | No.2994 べき内積 |
ユーザー |
![]() |
提出日時 | 2024-12-11 00:51:19 |
言語 | D (dmd 2.109.1) |
結果 |
RE
|
実行時間 | - |
コード長 | 4,041 bytes |
コンパイル時間 | 1,132 ms |
コンパイル使用メモリ | 103,376 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-12-15 11:57:38 |
合計ジャッジ時間 | 5,952 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 3 |
other | RE * 23 |
ソースコード
// the struct of finite fields with p elements// p must be a prime numberstruct FiniteField(long p)if (p > 1){ulong n;this(long n) {if (n < 0) this.n = n%p + p;else this.n = n%p;}FiniteField!p opUnary(string op: "+")() {return this;}FiniteField!p opUnary(string op: "-")() {return FiniteField!p(-n);}FiniteField!p opBinary(string op)(long rhs) {static if (op == "^^") {if (rhs < 0) { return this.inv() ^^ rhs; }auto result = FiniteField!p(1);auto i = 0, pow_2_i = this; // pow_2_i = n^{2^i}rhs %= (p-1);while (rhs > 0) {if (rhs % 2 == 1) {result = result * pow_2_i;}rhs >>= 1;i++;pow_2_i = pow_2_i * pow_2_i;}return result;}else {return this.opBinary!op(FiniteField!p(rhs));}}FiniteField!p opBinary(string op)(FiniteField!p rhs) {auto result = this;static if (op == "+") {result.n = (result.n + rhs.n) % p;}else if (op == "-") {result.n = (result.n - rhs.n + p) % p;}else if (op == "*") {result.n = (result.n * rhs.n) % p;}else if (op == "/") {assert (rhs.n != 0);result.n = (result.n + rhs.inv().n) % p;}else assert(0);return result;}FiniteField!p opOpAssign(string op)(long rhs) {return this.opBinary!op(rhs);}FiniteField!p opOpAssign(string op)(FiniteField!p rhs) {return this = this.opBinary!op(rhs);}FiniteField!p inv() {assert (this.n != 0);return this ^^ (p-2);}string toString() {import std.conv: to;return n.to!string;}}immutable p = 1009;alias F = FiniteField!p;// main partulong[] calculate(ulong[] K, ulong[] A_) {import std.algorithm, std.array;auto M = K.length - 1;auto N = A_.length - 1;auto A_0 = new F[A_.length]; A_0[0] = F(1); // A_0 = 1auto A_1 = A_.map!(x => F(x)).array; // A_1 = A_{1,0} + A_{1, 1}x + A_{1, 2}x^2 + ...F[][] A_list = [A_1]; // A_list[k] = A_1^{2^k}{auto i = 0, pow_2_i = 1;while (pow_2_i < p) {A_list ~= product(A_list[$-1], A_list[$-1]);i++; pow_2_i *= 2;}}// calculate A_1^kF[] pow_A_1(ulong k) {assert(k < p);auto result = A_0.dup;int i = 0;while (k > 0) {if (k % 2 == 1) result = product(result, A_list[i]);i++; k >>= 1;}return result;}ulong j = 0, q = 1; // q = p^jauto result = new F[A_.length]; result[0] = F(1);while (j < K.length && q <= N) {result = product(result, pow_A_1(K[j]).frobenius(q)); // result *= {A_1^{K_j}}^qj++; q *= p;}auto pow = A_1[0] ^^ (cast(long) reduce!"a+b"(0UL, K[j .. $])); // A_{1, 0} ^ {c_j + ... + c_M}return result.map!(x => (x*pow).n).array;}// f, g -> fg; calculate the productF[] product(F[] f, F[] g) {auto h = new F[f.length]; // h = fgforeach (n; 0 .. f.length) {foreach (i; 0 .. n+1)h[n] += f[i] * g[n-i];}return h;}// f -> f^q (q = p^s); calculate q-th powerF[] frobenius(F[] f, ulong q) {auto result = new F[f.length];foreach (i; 0 .. f.length) {if (i % q == 0) result[i] = f[i/q];}return result;}void main(string[] args) {import std.array, std.algorithm, std.conv, std.stdio;ulong[] K, A;{auto tmp = args[1 .. $].map!(to!ulong).array;auto M = tmp[0].to!ulong;K = tmp[2 .. M+3];A = tmp[M+3 .. $];}calculate(K, A).each!(x => write(x, " "));writeln();}