結果

問題 No.2994 べき内積
ユーザー ジュ・ビオレ・グレイス
提出日時 2024-12-11 00:51:19
言語 D
(dmd 2.109.1)
結果
RE  
実行時間 -
コード長 4,041 bytes
コンパイル時間 1,132 ms
コンパイル使用メモリ 103,376 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-12-15 11:57:38
合計ジャッジ時間 5,952 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample RE * 3
other RE * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// the struct of finite fields with p elements
// p must be a prime number
struct FiniteField(long p)
if (p > 1)
{
ulong n;
this(long n) {
if (n < 0) this.n = n%p + p;
else this.n = n%p;
}
FiniteField!p opUnary(string op: "+")() {
return this;
}
FiniteField!p opUnary(string op: "-")() {
return FiniteField!p(-n);
}
FiniteField!p opBinary(string op)(long rhs) {
static if (op == "^^") {
if (rhs < 0) { return this.inv() ^^ rhs; }
auto result = FiniteField!p(1);
auto i = 0, pow_2_i = this; // pow_2_i = n^{2^i}
rhs %= (p-1);
while (rhs > 0) {
if (rhs % 2 == 1) {
result = result * pow_2_i;
}
rhs >>= 1;
i++;
pow_2_i = pow_2_i * pow_2_i;
}
return result;
}
else {
return this.opBinary!op(FiniteField!p(rhs));
}
}
FiniteField!p opBinary(string op)(FiniteField!p rhs) {
auto result = this;
static if (op == "+") {
result.n = (result.n + rhs.n) % p;
}
else if (op == "-") {
result.n = (result.n - rhs.n + p) % p;
}
else if (op == "*") {
result.n = (result.n * rhs.n) % p;
}
else if (op == "/") {
assert (rhs.n != 0);
result.n = (result.n + rhs.inv().n) % p;
}
else assert(0);
return result;
}
FiniteField!p opOpAssign(string op)(long rhs) {
return this.opBinary!op(rhs);
}
FiniteField!p opOpAssign(string op)(FiniteField!p rhs) {
return this = this.opBinary!op(rhs);
}
FiniteField!p inv() {
assert (this.n != 0);
return this ^^ (p-2);
}
string toString() {
import std.conv: to;
return n.to!string;
}
}
immutable p = 1009;
alias F = FiniteField!p;
// main part
ulong[] calculate(ulong[] K, ulong[] A_) {
import std.algorithm, std.array;
auto M = K.length - 1;
auto N = A_.length - 1;
auto A_0 = new F[A_.length]; A_0[0] = F(1); // A_0 = 1
auto A_1 = A_.map!(x => F(x)).array; // A_1 = A_{1,0} + A_{1, 1}x + A_{1, 2}x^2 + ...
F[][] A_list = [A_1]; // A_list[k] = A_1^{2^k}
{
auto i = 0, pow_2_i = 1;
while (pow_2_i < p) {
A_list ~= product(A_list[$-1], A_list[$-1]);
i++; pow_2_i *= 2;
}
}
// calculate A_1^k
F[] pow_A_1(ulong k) {
assert(k < p);
auto result = A_0.dup;
int i = 0;
while (k > 0) {
if (k % 2 == 1) result = product(result, A_list[i]);
i++; k >>= 1;
}
return result;
}
ulong j = 0, q = 1; // q = p^j
auto result = new F[A_.length]; result[0] = F(1);
while (j < K.length && q <= N) {
result = product(result, pow_A_1(K[j]).frobenius(q)); // result *= {A_1^{K_j}}^q
j++; q *= p;
}
auto pow = A_1[0] ^^ (cast(long) reduce!"a+b"(0UL, K[j .. $])); // A_{1, 0} ^ {c_j + ... + c_M}
return result.map!(x => (x*pow).n).array;
}
// f, g -> fg; calculate the product
F[] product(F[] f, F[] g) {
auto h = new F[f.length]; // h = fg
foreach (n; 0 .. f.length) {
foreach (i; 0 .. n+1)
h[n] += f[i] * g[n-i];
}
return h;
}
// f -> f^q (q = p^s); calculate q-th power
F[] frobenius(F[] f, ulong q) {
auto result = new F[f.length];
foreach (i; 0 .. f.length) {
if (i % q == 0) result[i] = f[i/q];
}
return result;
}
void main(string[] args) {
import std.array, std.algorithm, std.conv, std.stdio;
ulong[] K, A;
{
auto tmp = args[1 .. $].map!(to!ulong).array;
auto M = tmp[0].to!ulong;
K = tmp[2 .. M+3];
A = tmp[M+3 .. $];
}
calculate(K, A).each!(x => write(x, " "));
writeln();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0