結果
| 問題 |
No.2713 Just Solitaire
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-12-12 16:12:50 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 5 ms / 2,000 ms |
| コード長 | 8,749 bytes |
| コンパイル時間 | 2,711 ms |
| コンパイル使用メモリ | 186,120 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-12-12 16:12:58 |
| 合計ジャッジ時間 | 4,220 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 32 |
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>
#include <map>
#include <memory>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <queue>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <random>
#define LEN(x) (long long)(x.size())
#define FOR(i, a, n) for(int i=(a);i<(n); ++i)
#define FOE(i, a) for(auto i : a)
#define ALL(c) (c).begin(), (c).end()
#define RALL(c) (c).rbegin(), (c).rend()
#define BIT_COUNT32(bit) (__builtin_popcount(bit))
#define BIT_COUNT64(bit) (__builtin_popcountll(bit))
template<typename T>
using MinPriorityQueue = std::priority_queue<T, std::vector<T>, std::greater<T> >;
template<typename T>
using MaxPriorityQueue = std::priority_queue<T>;
// @formatter:off
typedef long long LL;
typedef __int128_t LLL;
template<typename T> std::vector<T> make_v(size_t a){return std::vector<T>(a);}
template<typename T,typename... Ts> auto make_v(size_t a, Ts... ts){ return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));} // C++14
template<typename T,typename V> typename std::enable_if<std::is_class<T>::value==0>::type fill_v(T &t,const V &v){t=v;}
template<typename T,typename V> typename std::enable_if<std::is_class<T>::value!=0>::type fill_v(T &t,const V &v){for(auto &e:t) fill_v(e,v);}
template<class T> inline T ceil(T a, T b) { assert(a >= 0 and b > 0); return (a + b - 1) / b; }
void print() { std::cout << std::endl; }
template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) { std::cout << head; if (sizeof...(tail) != 0) {std::cout << " ";} print(std::forward<Tail>(tail)...); }
template <class T> void print(std::vector<T> &v) {for (auto& a : v) { std::cout << a; if (&a != &v.back()) {std::cout << " ";} }std::cout << std::endl;}
template <class T> void print(std::pair<T, T> &p) { std::cout << p.first << " " << p.second << std::endl; }
void debug() { std::cerr << std::endl; }
template <class Head, class... Tail> void debug(Head&& head, Tail&&... tail) { std::cerr << head; if (sizeof...(tail) != 0) {std::cerr << " ";} debug(std::forward<Tail>(tail)...); }
template <class T> void debug(std::vector<T> &v) {for (auto& a : v) { std::cerr << a; if (&a != &v.back()) {std::cerr << " ";} }std::cerr << std::endl;}
template <class T> void debug(std::pair<T, T> &p) { std::cerr << p.first << " " << p.second << std::endl; }
inline bool inside(long long y, long long x, long long H, long long W) {return 0 <= y and y < H and 0 <= x and x < W; }
template<class T> inline double euclidean_distance(T y1, T x1, T y2, T x2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); }
template<class T> inline T euclidean_distance2(T y1, T x1, T y2, T x2) { return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2); }
template<class T> inline T manhattan_distance(T y1, T x1, T y2, T x2) { return abs(x1 - x2) + abs(y1 - y2); }
template<typename T> T &chmin(T &a, const T &b) { return a = std::min(a, b); }
template<typename T> T &chmax(T &a, const T &b) { return a = std::max(a, b); }
bool is_bit_on(const unsigned long long bit, const unsigned int i) { return (bit >> i) & 1u; }
unsigned long long get_bit_set(const unsigned long long bit, const unsigned int i, const unsigned int b) { assert(b == 0 or b == 1); if (b == 0) { return bit & ~(1ull << i); } else {return bit | (1ull << i);}}
// 初項s交差d長さnの数列の和
long long sum_of_arithmetic_progression(long long s, long long d, long long n) {
return n * (2 * s + (n - 1) * d) / 2;
}
// 三角数
long long triangular_number(long long n) {
return n * (n + 1) / 2;
}
// sqrt(x)の整数解を求める
// 整数解がなければ-1
long long sqrt_integer(const long long x) {
if (x < 0) {
return -1;
}
auto a = (long long)sqrt(x);
if (a * a == x) {
return a;
}
if((a - 1) * (a - 1) == x) {
return a - 1;
}
if((a + 1) * (a + 1) == x) {
return a + 1;
}
return -1;
}
// xが2の階乗かどうか判定
bool is_power_of_two(long long x) {
return !(x & (x - 1));
}
// O(log max(a, b_sum))
long long gcd(long long a, long long b) {
if (b == 0) { return a; }
return gcd(b, a % b);
}
long long lcm(long long a, long long b) {
long long g = gcd(a, b);
return a / g * b;
}
const int INF = 1u << 30u; // 1,073,741,824
const long long LINF = 1ull << 60u;
const double EPS = 1e-9;
const long double PI = acos(-1.0);
// 2次元配列上での移動.右,下,左,上,右上,右下,左下,左上
const std::vector<int> dy8 = {0, 1, 0, -1, -1, 1, 1, -1}, dx8 = {1, 0, -1, 0, 1, 1, -1, -1};
// @formatter:on
using namespace std;
#include <cassert>
#include <cmath>
#include <queue>
#include <vector>
// 最大流問題を解く O(|E||V|^2)
class Dinic {
public:
struct Edge {
const unsigned int to; // 行き先のノードid
long long flow; // 流量
const long long cap; // 容量
const unsigned int rev; // 逆辺のノードid
const bool is_rev; // 逆辺かどうか
Edge(int to, long long flow, long long cap, int rev, bool is_rev) : to(to), flow(flow), cap(cap), rev(rev),
is_rev(is_rev) {
assert(this->cap >= 0);
}
};
std::vector<std::vector<Edge> > graph; // グラフの隣接リスト表現
std::vector<int> level; // sからの距離
std::vector<unsigned int> iter; // どこまで調べ終わったか
Dinic(unsigned int num_of_node) {
assert(num_of_node > 0);
this->graph.resize(num_of_node);
this->level.resize(num_of_node);
this->iter.resize(num_of_node);
}
// fromからtoへ向かう容量capの辺をグラフに追加する
void add_edge(unsigned int from, unsigned int to, long long cap) {
this->graph[from].emplace_back(Edge(to, 0, cap, (unsigned int) graph[to].size(), false));
this->graph[to].emplace_back(Edge(from, cap, cap, (unsigned int) graph[from].size() - 1, true));
}
// sからtへの最大流を求める
long long max_flow(unsigned int s, unsigned int t) {
long long flow = 0;
while (true) {
this->bfs(s);
if (this->level[t] < 0) {
return flow;
}
fill(this->iter.begin(), this->iter.end(), 0);
long long f;
while ((f = dfs(s, t, 10000000000ll)) > 0) {
flow += f;
}
}
}
private:
// sからの最短距離をBFSで計算する
void bfs(unsigned int s) {
fill(this->level.begin(), this->level.end(), -1);
std::queue<unsigned int> que;
this->level[s] = 0;
que.push(s);
while (not que.empty()) {
unsigned int v = que.front();
que.pop();
for (int i = 0; i < (int) this->graph[v].size(); ++i) {
Edge &e = this->graph[v][i];
if ((e.cap - e.flow) > 0 and level[e.to] < 0) {
this->level[e.to] = this->level[v] + 1;
que.push(e.to);
}
}
}
}
// 増加パスをDFSで探す
long long dfs(unsigned int v, unsigned int t, long long f) {
if (v == t) {
return f;
}
for (unsigned int &i = this->iter[v]; i < this->graph[v].size(); ++i) {
Edge &e = this->graph[v][i];
if ((e.cap - e.flow) > 0 and this->level[v] < this->level[e.to]) {
long long d = dfs(e.to, t, std::min(f, e.cap - e.flow));
if (d > 0) {
e.flow += d;
this->graph[e.to][e.rev].flow -= d;
return d;
}
}
}
return 0;
}
};
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
int N, M;
cin >> N >> M;
vector<LL> A(N);
FOR(i, 0, N) {
cin >> A[i];
}
vector<LL> B(M);
FOR(i, 0, M) {
cin >> B[i];
}
auto C = make_v<LL>(M, 0);
FOR(i, 0, M) {
int K;
cin >> K;
FOR(j, 0, K) {
LL c;
cin >> c;
c--;
C[i].emplace_back(c);
}
}
Dinic dinic(N + M + 2);
int s = N + M;
int t = s + 1;
FOR(i, 0, N) {
dinic.add_edge(i, t, A[i]);
}
LL ans = 0;
FOR(i, 0, M) {
ans += B[i];
dinic.add_edge(s, N + i, B[i]);
}
FOR(i, 0, M) {
FOR(j, 0, LEN(C[i])) {
dinic.add_edge(N + i, C[i][j], INF);
}
}
ans -= dinic.max_flow(s, t);
print(ans);
return 0;
}