結果
問題 | No.2991 Hypercubic Graph Flow |
ユーザー | chineristAC |
提出日時 | 2024-12-16 00:26:07 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 156 ms / 2,000 ms |
コード長 | 3,247 bytes |
コンパイル時間 | 179 ms |
コンパイル使用メモリ | 82,240 KB |
実行使用メモリ | 88,112 KB |
最終ジャッジ日時 | 2024-12-16 00:26:09 |
合計ジャッジ時間 | 2,048 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 43 ms
56,644 KB |
testcase_01 | AC | 49 ms
63,088 KB |
testcase_02 | AC | 76 ms
78,128 KB |
testcase_03 | AC | 44 ms
56,800 KB |
testcase_04 | AC | 156 ms
88,112 KB |
testcase_05 | AC | 45 ms
56,320 KB |
testcase_06 | AC | 93 ms
79,916 KB |
testcase_07 | AC | 44 ms
56,704 KB |
testcase_08 | AC | 51 ms
66,304 KB |
testcase_09 | AC | 72 ms
69,632 KB |
ソースコード
import sys,time from itertools import permutations from heapq import heappop,heappush from collections import deque import random import bisect from math import log,gcd input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) def find_euler_tour(N,M,edge): done_counter = [0] * N used = [False] * M visit = [False] * N res = [] for start in range(N): if visit[start]: continue visit[start] = True st = [start] tmp_res = [] while st: v = st[-1] visit[v] = True if done_counter[v] == len(edge[v]): tmp_res.append(v) st.pop() continue nv,eid = edge[v][done_counter[v]] done_counter[v] += 1 if used[eid]: continue used[eid] = True st.append(nv) res.append(tmp_res) return res def solve(N): if N == 1: return ("No",[]) if N & 1 == 0: edge = [[] for v in range(1<<N)] nxt_eid = 0 for v in range(1<<N): for k in range(N): if v>>k & 1 == 0: edge[v].append((v^(1<<k),nxt_eid)) edge[v^(1<<k)].append((v,nxt_eid)) nxt_eid += 1 euler_tour = find_euler_tour(1<<N,nxt_eid,edge) res = [[0]*(1<<N) for i in range(1<<N)] for ce in euler_tour: for u,v in zip(ce,ce[1:]): res[u][v] = 1 res[v][u] = -1 return ("Yes",res) else: edge = [[] for v in range(1<<N)] nxt_eid = 0 for v in range(1<<N): for k in range(3,N): if v>>k & 1 == 0: edge[v].append((v^(1<<k),nxt_eid)) edge[v^(1<<k)].append((v,nxt_eid)) nxt_eid += 1 euler_tour = find_euler_tour(1<<N,nxt_eid,edge) res = [[0]*(1<<N) for i in range(1<<N)] for ce in euler_tour: for u,v in zip(ce,ce[1:]): res[u][v] = 1 res[v][u] = -1 for root in range(0,1<<N,8): two_in = [0,3,5,6] two_out = [1,2,4,7] for a,b in zip(two_in,two_out): res[a^root][b^root] = -2 res[b^root][a^root] = 2 for a in two_in: for k in [2,4]: res[a^root][a^k^root] = 1 res[a^k^root][a^root] = -1 return ("Yes",res) def checker(N,res): for i in range(1<<N): for k in range(N): if res[i][i^(1<<k)] == 0: print(i,i^(1<<k)) return False for j in range(1<<N): d = i^j if (d & (d-1)) != 0 and res[i][j]!=0: return (False,"must 0") if sum(res[i])!=0: return (False,"sum") return True N = int(input()) ans,res = solve(N) if ans == "Yes": print(ans) for i in range(1<<N): print(*res[i]) else: print(ans)