結果

問題 No.2991 Hypercubic Graph Flow
ユーザー 👑 rin204
提出日時 2024-12-16 20:17:31
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 481 ms / 2,000 ms
コード長 1,811 bytes
コンパイル時間 522 ms
コンパイル使用メモリ 82,368 KB
実行使用メモリ 91,904 KB
最終ジャッジ日時 2024-12-16 20:17:34
合計ジャッジ時間 2,836 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 10
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
sys.setrecursionlimit(10**6)
def EulerPath(m, edges, s=0):
used = [False] * m
path = []
def dfs(pos):
for npos, i in edges[pos]:
if used[i]:
continue
used[i] = True
dfs(npos)
path.append(i)
dfs(s)
return path[::-1]
def solve(n):
if n == 1:
print("No")
return
print("Yes")
n2 = n - (n % 2)
edges = [[] for _ in range(1 << n2)]
E = []
m = 0
for i in range(1 << n2):
for j in range(n2):
if i >> j & 1:
continue
edges[i].append((i ^ (1 << j), m))
edges[i ^ (1 << j)].append((i, m))
m += 1
E.append(1 << j)
path = EulerPath(m, edges)
A = [[0] * (1 << n) for _ in range(1 << n)]
add = 0
if n % 2 == 1:
add = 1 << (n - 1)
s = 0
for p in path:
t = s ^ E[p]
A[s][t] = 1
A[t][s] = -1
if add != 0:
A[s + add][t + add] = -1
A[t + add][s + add] = 1
s = t
if n % 2 == 1:
for i in range(0, 1 << (n - 1), 2):
u1 = i
u2 = i + 1
u3 = i + add + 1
u4 = i + add
x = A[u1][u2]
A[u1][u2] += x
A[u2][u3] += x
A[u3][u4] += x
A[u4][u1] += x
A[u2][u1] -= x
A[u3][u2] -= x
A[u4][u3] -= x
A[u1][u4] -= x
for row in A:
print(*row)
for i in range(1 << n):
for j in range(1 << n):
if bin(i ^ j).count("1") == 1:
assert A[i][j] != 0
else:
assert A[i][j] == 0
assert A[i][j] == -A[j][i]
assert sum(A[i]) == 0
solve(int(input()))
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0