結果

問題 No.2996 Floor Sum
ユーザー 👑 p-adicp-adic
提出日時 2024-12-20 07:53:56
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 691 ms / 5,000 ms
コード長 64,614 bytes
コンパイル時間 8,385 ms
コンパイル使用メモリ 292,692 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-12-21 18:06:42
合計ジャッジ時間 7,736 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 13 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 627 ms
6,816 KB
testcase_04 AC 57 ms
6,816 KB
testcase_05 AC 17 ms
6,820 KB
testcase_06 AC 73 ms
6,820 KB
testcase_07 AC 3 ms
6,816 KB
testcase_08 AC 4 ms
6,820 KB
testcase_09 AC 3 ms
6,816 KB
testcase_10 AC 3 ms
6,820 KB
testcase_11 AC 3 ms
6,820 KB
testcase_12 AC 4 ms
6,816 KB
testcase_13 AC 691 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef INCLUDE_MODE
#define INCLUDE_MODE
// #define REACTIVE
// #define USE_GETLINE
/* #define SUBMIT_ONLY */
#define DEBUG_OUTPUT
// #define SAMPLE_CHECK dummy
#endif
#ifdef INCLUDE_MAIN

VO Solve()
{
  CIN( int , p , q );
  CIN( ll , N , M , A , B );
  RETURN( Answer( N + 1 , M , A , B , p , q ) );
}
REPEAT_MAIN(5e3);

#else /* INCLUDE_MAIN */
#ifdef INCLUDE_SUB

/* COMPAREに使用。圧縮時は削除する。*/
MP Naive( ll N , ll M , ll A , ll B , int p , int q , const bool& debug_output = true )
{
  MP answer{};
  FOR( i , 0 , N ){
    answer += Power( MP{ i } , p ) * Power( MP{ ( A * i + B ) / M } , q );
  }
  return answer;
}

/* COMPAREに使用。圧縮時は削除する。*/
MP Answer( ll N , ll M , ll A , ll B , int p , int q , const bool& debug_output = true )
{
  vector f( p + 1 , vector<MP>( q + 1 ) );
  f[p][q] = 1;
  return FloorSumComposition<MP,ll,20>( B , A , M , N , move( f ) );
}

/* 圧縮時は中身だけ削除する。*/
IN VO Experiment()
{
}

/* 圧縮時は中身だけ削除する。*/
IN VO SmallTest()
{
  CEXPR( int , bound , 4 );
  int N_min = 0 , N_max = bound;
  FOREQ( N , N_min , N_max ){
    int M_min = 1 , M_max = bound;
    FOREQ( M , M_min , M_max ){
      int A_min = 0 , A_max = bound;
      FOREQ( A , A_min , A_max ){
        int B_min = 0 , B_max = bound;
        FOREQ( B , B_min , B_max ){
          int p_min = 0 , p_max = bound;
          FOREQ( p , p_min , p_max ){
            int q_min = 0 , q_max = bound;
            FOREQ( q , q_min , q_max ){
              COMPARE( N , M , A , B , p , q );
            }
          }
        }
      }
    }
  }
  
}

/* 圧縮時は中身だけ削除する。*/
IN VO RandomTest( const int& test_case_num )
{
  REPEAT( test_case_num ){

    CEXPR( int , bound_N , 1e3 ); CIN_ASSERT( N , 0 , bound_N );
    CEXPR( ll , bound_M , 1e9 ); CIN_ASSERT( M , 1 , bound_M );
    CEXPR( ll , bound_A , 1e9 ); CIN_ASSERT( A , 0 , bound_A );
    CEXPR( ll , bound_B , 1e9 ); CIN_ASSERT( B , 0 , bound_B );
    CEXPR( int , bound_p , 10 ); CIN_ASSERT( p , 0 , bound_p );
    CEXPR( int , bound_q , 10 ); CIN_ASSERT( q , 0 , bound_q );
    COMPARE( N , M , A , B , p , q );

  }
  CERR( "全ての出力が一致しました。" );
}

#define INCLUDE_MAIN
#include __FILE__
#else /* INCLUDE_SUB */
#ifdef INCLUDE_LIBRARY

/* VVV 常設でないライブラリは以下に挿入する。*/

#ifdef DEBUG
  #include "c:/Users/user/Documents/Programming/Mathematics/Polynomial/Truncate/a_Body.hpp"
#else
#define PO Polynomial
#define TRPO TruncatedPolynomial

TE <TY T,int EX_lim>CL PW3PW_CE{PU:T m_val[EX_lim];CE PW3PW_CE(CO T& t);CE CO T& OP[](CRI i)CO;CE CO T(&Get()CO)[EX_lim];};
TE <TY T,int EX_lim> CE PW3PW_CE<T,EX_lim>::PW3PW_CE(CO T& t):m_val(){T PW{t};for(uint EX = EX_lim - 1;EX + 1 > 0;EX--){m_val[EX]= -PW;m_val[EX]*= PW *= PW;}}TE <TY T,int EX_lim> CE CO T& PW3PW_CE<T,EX_lim>::OP[](CRI i)CO{AS(i < EX_lim);RE m_val[i];}TE <TY T,int EX_lim> CE CO T(&PW3PW_CE<T,EX_lim>::Get()CO)[EX_lim]{RE m_val;}
#define PS_FOR_FFT(MOD,LE,BORDER,PR,IPR,MINT)ST_AS((MINT<MOD>::DeRP(PR)*= MINT<MOD>::DeRP(IPR))== MINT<MOD>::DeRP(1));TE <> CE CO uint LimitOfPWForFFT<MINT<MOD> > = LE - 1;TE <> CE CO uint BorderForFFT<MINT<MOD> > = BORDER;TE <> IN CO MINT<MOD>(&PrimitiveRootOfTwoForFFT()NE)[LimitOfPWForFFT<MINT<MOD> >]{ST CE PW3PW_CE<MINT<MOD>,LimitOfPWForFFT<MINT<MOD> > > PRT{PR};ST_AS(PRT.m_val[0]== MINT<MOD>::DeRP(1));RE PRT.Get();}TE <> IN CO MINT<MOD>(&InversePrimitiveRootOfTwoForFFT()NE)[LimitOfPWForFFT<MINT<MOD> >]{ST CE PW3PW_CE<MINT<MOD>,LimitOfPWForFFT<MINT<MOD> > > IPRT{IPR};ST_AS(IPRT.m_val[0]== MINT<MOD>::DeRP(1)&&(MINT<MOD>::DeRP(PR)*= MINT<MOD>::DeRP(IPR))== MINT<MOD>::DeRP(1));RE IPRT.Get();}
TE <TY T> CE CO uint LimitOfPWForFFT{};TE <TY T> CE CO uint BorderForFFT{};TE <TY T> IN CO T(&PrimitiveRootOfTwoForFFT()NE)[LimitOfPWForFFT<T>];TE <TY T> IN CO T(&InversePrimitiveRootOfTwoForFFT()NE)[LimitOfPWForFFT<T>];
PS_FOR_FFT(998244353,24,4,31,128805723,Mod);PS_FOR_FFT(167772161,26,4,17,29606852,Mod);PS_FOR_FFT(469762049,27,4,30,15658735,Mod);PS_FOR_FFT(754974721,25,4,362,415027540,Mod);
TE <TY T> VO CooleyTukey(VE<T>& f,CRUI N_input_start,CRUI N_input_lim,CRUI N_output_start,CRUI N_output_lim,CRUI two_PW,CRUI EX,CO T(&PRT)[LimitOfPWForFFT<T>]){CO uint LE = two_PW + N_input_start + N_output_start;f.reserve(LE);WH(f.SZ()< LE){f.push_back(0);}ST VE<uint> bit_reverse[32]={VE<uint>(1)};ST uint e_next = 1;ST uint two_PW_next = 1;ST uint two_PW_next2 = 2;ST VE<uint>* p_bit_reverse_prev = bit_reverse;ST VE<uint>* p_bit_reverse_curr = p_bit_reverse_prev + 1;WH(e_next <= EX){*p_bit_reverse_curr = VE<uint>(two_PW_next2);uint* p_bit_reverse_curr_i = &((*p_bit_reverse_curr)[0]);uint* p_bit_reverse_curr_i_plus = p_bit_reverse_curr_i + two_PW_next;uint* p_bit_reverse_prev_i = &((*p_bit_reverse_prev)[0]);for(uint i = 0;i < two_PW_next;i++){(*(p_bit_reverse_curr_i_plus++)= *(p_bit_reverse_curr_i++)= *(p_bit_reverse_prev_i++)* 2)+= 1;}e_next++;swap(two_PW_next,two_PW_next2);two_PW_next2 *= 4;p_bit_reverse_prev++;p_bit_reverse_curr++;}CO VE<uint>& bit_reverse_EX = bit_reverse[EX];uint bit_num = 0;CO uint* p_bit_num_reverse = &(bit_reverse_EX[bit_num]);WH(bit_num < two_PW){if(*p_bit_num_reverse < bit_num){swap(f[*p_bit_num_reverse + N_input_start],f[bit_num + N_input_start]);}bit_num++;p_bit_num_reverse++;}CO T& one = PRT[0];T zeta,diff;uint i,j,j_lim,two_PW_curr = 1,two_PW_curr_2 = 2;WH(two_PW_curr < two_PW){CO uint N_input_start_plus = N_input_start + two_PW_curr;bit_num = i = 0;zeta = one;WH(i < two_PW){j = i;j_lim = i + two_PW_curr;WH(j < j_lim){diff = f[j + N_input_start] - f[j + N_input_start_plus];f[j + N_input_start] += f[j + N_input_start_plus];f[j + N_input_start_plus] = zeta * diff;j++;}bit_num++;i += two_PW_curr_2;j = 0;WH(true){if(((bit_num >> j)& 1)== 1){zeta *= PRT[j+1];break;}j++;}}two_PW_curr <<= 1;two_PW_curr_2 <<= 1;}CO uint LE_fixed = N_output_lim + N_input_start;WH(f.SZ()> LE_fixed){f.pop_back();}for(uint i = 0;i < N_output_start;i++){f[N_input_start + i]= 0;}RE;}
TE <TY T> IN VO FFT(VE<T>& f,CRUI N_input_start,CRUI N_input_lim,CRUI two_PW,CRUI EX){CooleyTukey<T>(f,N_input_start,N_input_lim,0,two_PW,two_PW,EX,PrimitiveRootOfTwoForFFT<T>());}TE <TY T> IN VO FFT(VE<T>& f,CRUI N_input_start,CRUI N_input_lim,CRUI N_output_start,CRUI N_output_lim,CRUI two_PW,CRUI EX){CooleyTukey<T>(f,N_input_start,N_input_lim,N_output_start,N_output_lim,two_PW,EX,PrimitiveRootOfTwoForFFT<T>());}TE <TY T> IN VO IFFT(VE<T>& f,CRUI N_input_start,CRUI N_input_lim,CRUI two_PW,CO T& two_PW_inv,CRUI EX){CooleyTukey<T>(f,N_input_start,N_input_lim,0,two_PW,two_PW,EX,InversePrimitiveRootOfTwoForFFT<T>());CO uint SZ = two_PW + N_input_start;for(uint i = N_input_start;i < SZ;i++){f[i]*= two_PW_inv;}}TE <TY T> IN VO IFFT(VE<T>& f,CRUI N_input_start,CRUI N_input_lim,CRUI N_output_start,CRUI N_output_lim,CRUI two_PW,CO T& two_PW_inv,CRUI EX){CooleyTukey<T>(f,N_input_start,N_input_lim,N_output_start,N_output_lim,two_PW,EX,InversePrimitiveRootOfTwoForFFT<T>());CO uint SZ = N_output_lim + N_input_start;for(uint i = N_output_start + N_input_start;i < SZ;i++){f[i]*= two_PW_inv;}}

#define DC_OF_AR_FOR_PO(FUNC)IN PO<T> OP FUNC(PO<T> f)CO;IN PO<T> OP FUNC(T t)CO
#define DF_OF_AR_FOR_PO(FUNC,DEF)TE <TY T> IN PO<T> PO<T>::OP FUNC(PO<T> f)CO{RE MO(DEF);};TE <TY T> IN PO<T> PO<T>::OP FUNC(T t)CO{RE *TH FUNC PO<T>(MO(t));}
TE <TY T>CL TRPO;TE <TY T>CL PO{PU:VE<T> m_f;uint m_SZ;IN PO();IN PO(CO PO<T>& f);IN PO(PO<T>&& f);IN PO(VE<T> f);IN PO(T t);IN PO(CRUI i,T t);IN PO<T>& OP=(T n);IN PO<T>& OP=(PO<T> f);IN PO<T>& OP=(VE<T> f);IN CO T& OP[](CRUI i)CO;IN T& OP[](CRUI i);T OP()(CO T& t)CO;PO<T>& OP+=(CO PO<T>& f);PO<T>& OP-=(CO PO<T>& f);PO<T>& OP*=(CO PO<T>& f);PO<T>& OP*=(PO<T>&& f);IN PO<T>& OP/=(CO PO<T>& f);PO<T>& OP/=(CO T& t);PO<T>& OP%=(CO PO<T>& f);PO<T>& OP%=(CO T& t);bool OP==(CO PO<T>& f)CO;bool OP==(CO T& t)CO;TE <TY P> IN bool OP!=(CO P& f)CO;DC_OF_AR_FOR_PO(+);IN PO<T> OP-()CO;DC_OF_AR_FOR_PO(-);DC_OF_AR_FOR_PO(*);IN PO<T> OP/(CO PO<T>& f)CO;IN PO<T> OP/(CO T& t)CO;IN PO<T> OP%(CO PO<T>& f)CO;IN PO<T> OP%(CO T& t)CO;IN CO VE<T>& GetCoefficient()CO NE;IN CRUI SZ()CO NE;IN VO resize(CRUI deg_plus)NE;IN VO swap(PO<T>& f);IN VO swap(VE<T>& f);VO ReMORedundantZero();IN string Display()CO NE;ST PO<T> Quotient(CO PO<T>& f0,CO PO<T>& f1);ST PO<T> TP(CO PO<T>& f,CRUI f_TP_SZ);ST IN CO PO<T>& zero();ST IN CO PO<T>& one();ST IN CO PO<T>& x();ST IN CO T& c_zero();ST IN CO T& c_one();ST IN CO T& c_minus_one();IN PO<T>& SignInvert();};

#define DF_BODY_OF_PS_OF_MU_OF_PO_PROTH_MOD(TYPE,ARG,RHS)TE <> IN PO<TYPE>& PO<TYPE>::OP*=(ARG f){if(m_SZ != 0){VE<TYPE> v{};v.swap(m_f);TRPO<TYPE> TH_copy{m_SZ + f.m_SZ - 1,MO(v)};TH_copy *= RHS;m_f = MO(TH_copy.PO<TYPE>::m_f);m_SZ = m_f.SZ();}RE *TH;}
#define RE_ZERO_FOR_MU_FOR_TR_PO_IF(CONDITION)if(CONDITION){RE OP=(zero);}
#define RE_ZERO_FOR_TR_MU_CO_FOR_TR_PO_IF(CONDITION)if(CONDITION){RE TRPO<T>(m_N);}
#define RE_ZERO_FOR__FOR_TR_PO_IF(MU,CONDITION)RE_ZERO_FOR_ ## MU ## _FOR_TR_PO_IF(CONDITION)
#define SET_VE_FOR_AN_OF_MU_FOR_TR_PO(N_OUTPUT_LIM)if(PO<T>::m_SZ < N_OUTPUT_LIM){for(uint i = PO<T>::m_SZ;i < N_OUTPUT_LIM;i++){PO<T>::m_f.push_back(0);}PO<T>::m_SZ = N_OUTPUT_LIM;}
#define SET_VE_FOR_AN_OF_TR_MU_CO_FOR_TR_PO(N_OUTPUT_LIM)VE<T> AN(N_OUTPUT_LIM)
#define SET_VE_FOR_AN_OF__FOR_TR_PO(MU,N_OUTPUT_LIM)SET_VE_FOR_AN_OF_ ## MU ## _FOR_TR_PO(N_OUTPUT_LIM)
#define SET_SUM_OF_MU_FOR_TR_PO PO<T>::m_f[i]= sum
#define SET_SUM_OF_TR_MU_CO_FOR_TR_PO AN[i]= sum
#define SET_SUM_OF__FOR_TR_PO(MU)SET_SUM_OF_ ## MU ## _FOR_TR_PO
#define SET_N_INPUT_START_FOR_MU_FOR_TR_PO(F,SZ,N_INPUT_START_NUM)uint N_INPUT_START_NUM{};for(uint i = 0;i < SZ && searching;i++){if(F[i]!= zero){N_INPUT_START_NUM = i;searching = false;}}
#define SET_N_INPUT_MAX_FOR_MU_FOR_TR_PO(F,SZ,N_INPUT_MAX_NUM)uint N_INPUT_MAX_NUM{};searching = true;for(uint i =(SZ)- 1;searching;i--){if(F[i]!= zero){N_INPUT_MAX_NUM = i;searching = false;}}
#define CN_FOR_MU_FOR_TR_PO(J_MIN)CO uint j_max = i < N_input_max_0_start_1?i - N_input_start_1:N_input_max_0;T sum{zero};for(uint j = J_MIN;j <= j_max;j++){sum += PO<T>::m_f[j]* f.PO<T>::m_f[i - j];}PO<T>::m_f[i]= sum;
#define CN_FOR_TR_MU_CO_FOR_TR_PO(J_MIN)CO uint j_max = i < N_input_max_0_start_1?i - N_input_start_1:N_input_max_0;T& m_fi = AN[i];for(uint j = J_MIN;j <= j_max;j++){m_fi += PO<T>::m_f[j]* f.PO<T>::m_f[i - j];}
#define CN_FOR__FOR_TR_PO(MU,J_MIN)CN_FOR_ ## MU ## _FOR_TR_PO(J_MIN)
#define ZEROIFICATION_FOR_MU_FOR_TR_PO for(uint i = 0;i < N_input_start_0_start_1;i++){PO<T>::m_f[i]= 0;}
#define ZEROIFICATION_FOR_TR_MU_CO_FOR_TR_PO CRUI N_output_start_fixed = N_output_start < N_input_start_0_start_1?N_output_start:N_input_start_0_start_1;for(uint i = 0;i < N_output_start_fixed;i++){AN[i]= 0;}
#define ZEROIFICATION_FOR__FOR_TR_PO(MU)ZEROIFICATION_FOR_ ## MU ## _FOR_TR_PO
#define DF_0_OF__FOR_TR_PO(MU,ACCESS_ENTRY,N_OUTPUT_START)RE_ZERO_FOR__FOR_TR_PO_IF(MU,PO<T>::m_SZ == 0);uint N_output_max = PO<T>::m_SZ + f.PO<T>::m_SZ - 2;if(N_output_max >= m_N){N_output_max = m_N - 1;}CO uint N_output_lim = N_output_max + 1;SET_VE_FOR_AN_OF__FOR_TR_PO(MU,N_output_lim);for(uint i = N_output_max;searching;i--){T sum{zero};for(uint j = 0;j <= i;j++){sum += ACCESS_ENTRY * f.PO<T>::OP[](i - j);}SET_SUM_OF__FOR_TR_PO(MU);searching = i > N_OUTPUT_START;}
#define DF_1_OF__FOR_TR_PO(MU)SET_N_INPUT_START_FOR_MU_FOR_TR_PO(PO<T>::m_f,PO<T>::m_SZ,N_input_start_0);RE_ZERO_FOR__FOR_TR_PO_IF(MU,searching);searching = true;SET_N_INPUT_START_FOR_MU_FOR_TR_PO(f,f.PO<T>::m_SZ,N_input_start_1);
#define SET_N_INPUT_RANGE SET_N_INPUT_MAX_FOR_MU_FOR_TR_PO(PO<T>::m_f,PO<T>::m_SZ,N_input_max_0);SET_N_INPUT_MAX_FOR_MU_FOR_TR_PO(f,f.PO<T>::m_SZ < m_N?f.PO<T>::m_SZ:m_N,N_input_max_1);CO uint N_input_max_0_max_1 = N_input_max_0 + N_input_max_1;CO uint N_input_start_0_start_1 = N_input_start_0 + N_input_start_1;uint N_output_lim_fixed = N_input_max_0_max_1 < m_N?N_input_max_0_max_1 + 1:m_N;
#define DF_3_OF__FOR_TR_PO(MU)CO uint N_input_start_0_max_1 = N_input_start_0 + N_input_max_1;CO uint N_input_max_0_start_1 = N_input_max_0 + N_input_start_1;CO uint N_output_max_fixed = N_output_lim_fixed - 1;SET_VE_FOR_AN_OF__FOR_TR_PO(MU,N_output_lim_fixed);for(uint i = N_output_max_fixed;i > N_input_start_0_max_1;i--){CN_FOR__FOR_TR_PO(MU,i - N_input_max_1);}searching = true;for(uint i = N_input_start_0_max_1 < N_output_max_fixed?N_input_start_0_max_1:N_output_max_fixed;searching;i--){CN_FOR__FOR_TR_PO(MU,N_input_start_0);searching = i > N_input_start_0_start_1;}ZEROIFICATION_FOR__FOR_TR_PO(MU);
#define SET_SHIFTED_VE_FOR_MU(V,F,I_START,I_MAX,I_SHIFT)VE<T> V(product_LE);for(uint i = I_START;i <= I_MAX;i++){V[I_SHIFT + i]= F[i];}
#define DF_OF_MU_FOR_TR_PO(RE_LINE_0,RE_LINE_1,RE_LINE_2,RE_LINE_3,RE_LINE_4,MU,ACCESS_ENTRY,N_OUTPUT_START,FIX_N_OUTPUT_LIM)CE CRUI border_0 = FFT_MU_border_0<T>;CO T& zero = PO<T>::c_zero();bool searching = true;if(PO<T>::m_SZ < border_0 && f.PO<T>::m_SZ < border_0){RE_LINE_0;DF_0_OF__FOR_TR_PO(MU,ACCESS_ENTRY,N_OUTPUT_START);RE_LINE_1;}DF_1_OF__FOR_TR_PO(MU);RE_LINE_2;SET_N_INPUT_RANGE;FIX_N_OUTPUT_LIM;RE_LINE_3;DF_3_OF__FOR_TR_PO(MU);RE_LINE_4;
#define DF_OF_FFT_MU_FOR_TR_PO(RE_LINE_0,RE_LINE_1,RE_LINE_2,RE_LINE_3,RE_LINE_4,RE_LINE_5,MU,ACCESS_ENTRY,N_OUTPUT_START,N_OUTPUT_START_SHIFTED,FIX_N_OUTPUT_LIM,DC_OF_F0,N_INPUT_START_0,N_INPUT_LIM_0,DC_OF_F1,N_INPUT_START_1,N_INPUT_LIM_1,VE_FOR_IFFT,RESZ_VE_FOR_IFFT,I_START,MU_FORMULA,SET_AN)CE CRUI border_0 = FFT_MU_border_0<T>;CO T& zero = PO<T>::c_zero();bool searching = true;if(PO<T>::m_SZ < border_0 && f.PO<T>::m_SZ < border_0){RE_LINE_0;DF_0_OF__FOR_TR_PO(MU,ACCESS_ENTRY,N_OUTPUT_START);RE_LINE_1;}DF_1_OF__FOR_TR_PO(MU);RE_LINE_2;SET_N_INPUT_RANGE;FIX_N_OUTPUT_LIM;RE_LINE_3;CO uint N_input_TR_deg_0_deg_1 = N_input_max_0 - N_input_start_0 + N_input_max_1 - N_input_start_1;CE CRUI border_1 = FFT_MU_border_1<T>;if(N_input_TR_deg_0_deg_1 < border_1){DF_3_OF__FOR_TR_PO(MU);RE_LINE_4;}uint two_PW = FFT_MU_border_1_2<T>;uint EX = FFT_MU_border_1_2_EX<T>;T two_PW_inv{FFT_MU_border_1_2_inv<T>};WH(N_input_TR_deg_0_deg_1 >= two_PW){two_PW *= 2;two_PW_inv /= 2;EX++;}CO uint product_LE = N_input_start_0_start_1 + two_PW;DC_OF_F0;DC_OF_F1;FFT<T>(f0,N_INPUT_START_0,N_INPUT_LIM_0,two_PW,EX);FFT<T>(f1,N_INPUT_START_1,N_INPUT_LIM_1,two_PW,EX);RESZ_VE_FOR_IFFT;for(uint i = I_START + two_PW - 1;i + 1 > I_START;i--){MU_FORMULA;}CO uint N_output_lim_shifted = N_output_lim_fixed - N_input_start_0_start_1;CO uint N_output_start_shifted = min(N_output_lim_shifted,uint(N_OUTPUT_START_SHIFTED));IFFT<T>(VE_FOR_IFFT,N_input_start_0_start_1,product_LE,N_output_start_shifted,N_output_lim_shifted,two_PW,two_PW_inv,EX);SET_AN;RE_LINE_5;
#define DF_OF_INVERSE_FOR_TR_PO(TYPE,RECURSION)CRUI N = f.GetTruncation();uint PW;uint PW_2 = 1;TRPO< TYPE > f_inv{PW_2,PO< TYPE >::c_one()/ f[0]};WH(PW_2 < N){PW = PW_2;PW_2 *= 2;f_inv.SetTruncation(PW_2);RECURSION;}f_inv.SetTruncation(N);RE f_inv
#define DF_OF_EXP_FOR_TR_PO(TYPE,RECURSION)AS(f[0]== PO< TYPE >::c_zero());CRUI N = f.GetTruncation();uint PW;uint PW_2 = 1;TRPO< TYPE > f_exp{PW_2,PO< TYPE >::c_one()};WH(PW_2 < N){PW = PW_2;PW_2 *= 2;f_exp.SetTruncation(PW_2);RECURSION;}f_exp.SetTruncation(N);RE f_exp
#define DF_OF_PS_OF_MU_OF_TR_PO(TYPE,BORDER_0,BORDER_1,BORDER_1_2,BORDER_1_2_EX,BORDER_1_2_INV)TE <> CE CO uint FFT_MU_border_0< TYPE > = BORDER_0;TE <> CE CO uint FFT_MU_border_1< TYPE > = BORDER_1;ST_AS(FFT_MU_border_0< TYPE > <= FFT_MU_border_1< TYPE >);TE <> CE CO uint FFT_MU_border_1_2< TYPE > = BORDER_1_2;ST_AS(FFT_MU_border_1< TYPE > < FFT_MU_border_1_2< TYPE > && FFT_MU_border_1_2< TYPE > <= FFT_MU_border_1< TYPE > * 2 );TE <> CE CO uint FFT_MU_border_1_2_EX< TYPE > = BORDER_1_2_EX;ST_AS(FFT_MU_border_1_2< TYPE > == 1 << FFT_MU_border_1_2_EX< TYPE > );TE <> CE CO uint FFT_MU_border_1_2_inv< TYPE > = BORDER_1_2_INV;ST_AS((TYPE::DeRP(FFT_MU_border_1_2< TYPE >)*= TYPE::DeRP(FFT_MU_border_1_2_inv< TYPE >))== TYPE::DeRP(1));TE <> IN TRPO< TYPE >& TRPO< TYPE >::OP*=(CO PO< TYPE >& f){RE TRPO< TYPE >::FFT_MU(f);}TE <> IN TRPO< TYPE >& TRPO< TYPE >::OP*=(PO< TYPE >&& f){RE TRPO< TYPE >::FFT_MU(MO(f));}TE <> TRPO< TYPE > IN Inverse(CO TRPO< TYPE >& f){DF_OF_INVERSE_FOR_TR_PO(TYPE,f_inv.TRMinus(f_inv.FFT_TRMU_CO(f,PW,PW_2).FFT_TRMU(f_inv,PW,PW_2),PW,PW_2));}TE <> TRPO< TYPE > IN Exp(CO TRPO< TYPE >& f){DF_OF_EXP_FOR_TR_PO(TYPE,f_exp.TRMinus((TRIntegral(Differential(f_exp).FFT_TRMU_CO(Inverse(f_exp),PW - 1,PW_2),PW).TRMinus(f,PW,PW_2)).FFT_TRMU(f_exp,PW,PW_2),PW,PW_2));}
#define DF_OF_PS_OF_MU_OF_PO_PROTH_MOD(MOD,BORDER_1_2_INV,MINT)DF_OF_PS_OF_MU_OF_TR_PO(MINT<MOD>,17,512,1024,10,BORDER_1_2_INV);DF_BODY_OF_PS_OF_MU_OF_PO_PROTH_MOD(MINT<MOD>,CO PO<MINT<MOD> >&,TH == &f?TH_copy:f);DF_BODY_OF_PS_OF_MU_OF_PO_PROTH_MOD(MINT<MOD>,PO<MINT<MOD> >&&,MO(f));

TE <TY T>CL TRPO:PU PO<T>{PU:uint m_N;PU:IN TRPO(CRUI N = 0);IN TRPO(CO TRPO<T>& f);IN TRPO(TRPO<T>&& f);IN TRPO(CRUI N,T t);IN TRPO(CRUI N,CO PO<T>& f);IN TRPO(CRUI N,PO<T>&& f);IN TRPO(CRUI N,VE<T>&& f);IN TRPO(CRUI N,CRUI i,T t);IN TRPO<T>& OP=(TRPO<T> f);IN TRPO<T>& OP=(T n);IN TRPO<T>& OP=(PO<T> f);IN TRPO<T>& OP+=(CO T& t);IN TRPO<T>& OP+=(CO PO<T>& f);IN TRPO<T>& OP+=(CO TRPO<T>& f);TRPO<T>& TRPlus(CO PO<T>& f,CRUI N_input_start,CRUI N_input_limit);IN TRPO<T>& OP-=(CO T& t);IN TRPO<T>& OP-=(CO PO<T>& f);IN TRPO<T>& OP-=(CO TRPO<T>& f);TRPO<T>& TRMinus(CO PO<T>& f,CRUI N_input_start,CRUI N_input_limit);IN TRPO<T>& OP*=(CO T& t);TRPO<T>& OP*=(CO PO<T>& f);IN TRPO<T>& OP*=(PO<T>&& f);TRPO<T>& FFT_MU(CO PO<T>& f);TRPO<T>& TRMU(CO PO<T>& f,CRUI N_output_start,CRUI N_output_lim);TRPO<T>& FFT_TRMU(CO PO<T>& f,CRUI N_output_start,CRUI N_output_lim);TRPO<T>& FFT_TRMU(PO<T>&& f,CRUI N_output_start,CRUI N_output_lim);TRPO<T> TRMU_CO(CO PO<T>& f,CRUI N_output_start,CRUI N_output_lim)CO;TRPO<T> FFT_TRMU_CO(CO PO<T>& f,CRUI N_output_start,CRUI N_output_lim)CO;TRPO<T> FFT_TRMU_CO(PO<T>&& f,CRUI N_output_start,CRUI N_output_lim)CO;IN TRPO<T>& OP/=(CO T& t);IN TRPO<T>& OP/=(CO TRPO<T>& t);IN TRPO<T>& OP%=(CO T& t);TE <TY P> IN TRPO<T> OP+(CO P& f)CO;IN TRPO<T> OP-()CO;TE <TY P> IN TRPO<T> OP-(CO P& f)CO;TE <TY P> IN TRPO<T> OP*(CO P& f)CO;TE <TY P> IN TRPO<T> OP/(CO P& f)CO;IN TRPO<T> OP%(CO T& t)CO;IN VO SetTruncation(CRUI N)NE;IN CRUI GetTruncation()CO NE;IN TRPO<T>& TruncateInitial(CRUI N)NE;IN TRPO<T>& TruncateFinal(CRUI N)NE;};TE <TY T> CE CO uint FFT_MU_border_0 = 17;TE <TY T> CE CO uint FFT_MU_border_1{};TE <TY T> CE CO uint FFT_MU_border_1_2{};TE <TY T> CE CO uint FFT_MU_border_1_2_EX{};TE <TY T> CE CO uint FFT_MU_border_1_2_inv{};

TE <TY T> IN TRPO<T>::TRPO(CRUI N):PO<T>(),m_N(N){AS(m_N>0);}TE <TY T> IN TRPO<T>::TRPO(CO TRPO<T>& f):PO<T>(f),m_N(f.m_N){}TE <TY T> IN TRPO<T>::TRPO(TRPO<T>&& f):PO<T>(MO(f.m_f)),m_N(f.m_N){}TE <TY T> IN TRPO<T>::TRPO(CRUI N,T t):PO<T>(MO(t)),m_N(N){AS(m_N>0);}TE <TY T> IN TRPO<T>::TRPO(CRUI N,CO PO<T>& f):PO<T>(),m_N(N){AS(m_N>0);PO<T>::m_SZ = f.PO<T>::m_SZ < m_N?f.PO<T>::m_SZ:m_N;PO<T>::m_f = VE<T>(PO<T>::m_SZ);for(uint i = 0;i < PO<T>::m_SZ;i++){PO<T>::m_f[i]= f.PO<T>::m_f[i];}}TE <TY T> IN TRPO<T>::TRPO(CRUI N,PO<T>&& f):PO<T>(),m_N(N){AS(m_N>0);if(f.PO<T>::m_SZ < m_N * 2){PO<T>::OP=(MO(f));if(f.PO<T>::m_SZ > m_N){TruncateFinal(m_N);}}else{PO<T>::m_f = VE<T>(m_N);for(uint i = 0;i < m_N;i++){PO<T>::m_f[i]= MO(f.PO<T>::m_f[i]);}PO<T>::m_SZ = m_N;}}TE <TY T> IN TRPO<T>::TRPO(CRUI N,VE<T>&& f):PO<T>(),m_N(N){AS(m_N>0);CO uint f_SZ = f.SZ();if(f_SZ < m_N * 2){PO<T>::OP=(MO(f));if(f_SZ > m_N){TruncateFinal(m_N);}}else{PO<T>::m_f = VE<T>(m_N);for(uint i = 0;i < m_N;i++){PO<T>::m_f[i]= MO(f[i]);}}}TE <TY T> IN TRPO<T>::TRPO(CRUI N,CRUI i,T t):PO<T>(),m_N(N){AS(m_N>0);if(i < m_N?t != PO<T>::c_zero():false){PO<T>::OP[](i)= MO(t);}}TE <TY T> IN TRPO<T>& TRPO<T>::OP=(TRPO<T> f){PO<T>::OP=(MO(f.m_f));m_N = f.m_N;RE *TH;}TE <TY T> IN TRPO<T>& TRPO<T>::OP=(T n){PO<T>::OP=(MO(n));RE *TH;}TE <TY T> IN TRPO<T>& TRPO<T>::OP=(PO<T> f){RE OP=(TRPO<T>(m_N,MO(f)));}TE <TY T> IN TRPO<T>& TRPO<T>::OP+=(CO T& t){PO<T>::OP+=(t);RE *TH;}TE <TY T> IN TRPO<T>& TRPO<T>::OP+=(CO PO<T>& f){RE TRPlus(f,0,f.m_SZ);}TE <TY T> IN TRPO<T>& TRPO<T>::OP+=(CO TRPO<T>& f){RE TRPlus(f,0,f.PO<T>::m_SZ);}TE <TY T>TRPO<T>& TRPO<T>::TRPlus(CO PO<T>& f,CRUI N_input_start,CRUI N_input_lim){CRUI SZ = N_input_lim < m_N?N_input_lim < f.PO<T>::m_SZ?N_input_lim:f.PO<T>::m_SZ:m_N < f.PO<T>::m_SZ?m_N:f.PO<T>::m_SZ;if(PO<T>::m_SZ < SZ){PO<T>::m_f.reserve(SZ);for(uint i = N_input_start;i < PO<T>::m_SZ;i++){PO<T>::m_f[i]+= f.PO<T>::m_f[i];}for(uint i = PO<T>::m_SZ;i < SZ;i++){PO<T>::m_f.push_back(f.PO<T>::m_f[i]);}PO<T>::m_SZ = SZ;}else{for(uint i = N_input_start;i < SZ;i++){PO<T>::m_f[i]+= f.PO<T>::m_f[i];}}RE *TH;}TE <TY T> IN TRPO<T>& TRPO<T>::OP-=(CO T& t){PO<T>::OP-=(t);RE *TH;}TE <TY T> IN TRPO<T>& TRPO<T>::OP-=(CO PO<T>& f){RE TRMinus(f,0,f.m_SZ);}TE <TY T> IN TRPO<T>& TRPO<T>::OP-=(CO TRPO<T>& f){RE TRMinus(f,0,f.PO<T>::m_SZ);}TE <TY T>TRPO<T>& TRPO<T>::TRMinus(CO PO<T>& f,CRUI N_input_start,CRUI N_input_lim){CRUI SZ = N_input_lim < m_N?N_input_lim < f.PO<T>::m_SZ?N_input_lim:f.PO<T>::m_SZ:m_N < f.PO<T>::m_SZ?m_N:f.PO<T>::m_SZ;if(PO<T>::m_SZ < SZ){PO<T>::m_f.reserve(SZ);for(uint i = N_input_start;i < PO<T>::m_SZ;i++){PO<T>::m_f[i]-= f.PO<T>::m_f[i];}for(uint i = PO<T>::m_SZ;i < SZ;i++){PO<T>::m_f.push_back(- f.PO<T>::m_f[i]);}PO<T>::m_SZ = SZ;}else{for(uint i = N_input_start;i < SZ;i++){PO<T>::m_f[i]-= f.PO<T>::m_f[i];}}RE *TH;}TE <TY T> IN TRPO<T>& TRPO<T>::OP*=(CO T& t){PO<T>::OP*=(t);RE *TH;}TE <TY T>TRPO<T>& TRPO<T>::OP*=(CO PO<T>& f){DF_OF_MU_FOR_TR_PO(RE_ZERO_FOR_MU_FOR_TR_PO_IF(f.PO<T>::m_SZ == 0),RE *TH,RE_ZERO_FOR_MU_FOR_TR_PO_IF(searching),RE_ZERO_FOR_MU_FOR_TR_PO_IF(N_input_start_0_start_1 >= m_N),RE *TH,MU,PO<T>::m_f[j],0,);}TE <TY T> IN TRPO<T>& TRPO<T>::OP*=(PO<T>&& f){RE OP*=(f);}TE <TY T>TRPO<T>& TRPO<T>::FFT_MU(CO PO<T>& f){DF_OF_FFT_MU_FOR_TR_PO(RE_ZERO_FOR_MU_FOR_TR_PO_IF(f.PO<T>::m_SZ == 0),RE *TH,RE_ZERO_FOR_MU_FOR_TR_PO_IF(searching),RE_ZERO_FOR_MU_FOR_TR_PO_IF(N_input_start_0_start_1 >= N_output_lim_fixed),RE *TH,RE *TH,MU,PO<T>::m_f[j],0,0,,VE<T>& f0 = PO<T>::m_f,N_input_start_0,N_input_max_0 + 1,SET_SHIFTED_VE_FOR_MU(f1,f.PO<T>::m_f,N_input_start_1,N_input_max_1,N_input_start_0),N_input_start_0_start_1,N_input_start_0 + N_input_max_1 + 1,f1,,N_input_start_0,f1[N_input_start_1 + i]*= f0[i],OP=(TRPO<T>(m_N,MO(f1))));}TE <TY T>TRPO<T>& TRPO<T>::TRMU(CO PO<T>& f,CRUI N_output_start,CRUI N_output_lim){DF_OF_MU_FOR_TR_PO(,RE *TH,,RE_ZERO_FOR_MU_FOR_TR_PO_IF(N_input_start_0_start_1 >= N_output_lim_fixed),RE *TH,MU,PO<T>::m_f[j],N_output_start,if(N_output_lim_fixed > N_output_lim){N_output_lim_fixed = N_output_lim;});}TE <TY T>TRPO<T>& TRPO<T>::FFT_TRMU(CO PO<T>& f,CRUI N_output_start,CRUI N_output_lim){DF_OF_FFT_MU_FOR_TR_PO(,RE *TH,,RE_ZERO_FOR_MU_FOR_TR_PO_IF(N_input_start_0_start_1 >= N_output_lim_fixed),RE *TH,RE *TH,MU,PO<T>::m_f[j],N_output_start,N_output_start < N_input_start_0_start_1?0:N_output_start - N_input_start_0_start_1,if(N_output_lim_fixed > N_output_lim){N_output_lim_fixed = N_output_lim;},VE<T>& f0 = PO<T>::m_f,N_input_start_0,N_input_max_0 + 1,SET_SHIFTED_VE_FOR_MU(f1,f.PO<T>::m_f,N_input_start_1,N_input_max_1,N_input_start_0),N_input_start_0_start_1,N_input_start_0 + N_input_max_1 + 1,f1,,N_input_start_0,f1[N_input_start_1 + i]*= f0[i],OP=(TRPO<T>(m_N,MO(f1))));}TE <TY T>TRPO<T>& TRPO<T>::FFT_TRMU(PO<T>&& f,CRUI N_output_start,CRUI N_output_lim){DF_OF_FFT_MU_FOR_TR_PO(,RE *TH,,RE_ZERO_FOR_MU_FOR_TR_PO_IF(N_input_start_0_start_1 >= N_output_lim_fixed),RE *TH,RE *TH,MU,PO<T>::m_f[j],N_output_start,N_output_start < N_input_start_0_start_1?0:N_output_start - N_input_start_0_start_1,if(N_output_lim_fixed > N_output_lim){N_output_lim_fixed = N_output_lim;},VE<T>& f0 = PO<T>::m_f,N_input_start_0,N_input_max_0 + 1,VE<T>&& f1 = MO(f.PO<T>::m_f),N_input_start_1,N_input_max_1 + 1,f0,f0.reserve(product_LE),0,f1[N_input_start_0_start_1 + i]= f0[N_input_start_0 + i]* f1[N_input_start_1 + i],for(uint i = N_input_start_0;i < N_input_start_0_start_1;i++){f0[i]= 0;}PO<T>::m_SZ = f0.SZ();SetTruncation(m_N););}TE <TY T>TRPO<T> TRPO<T>::TRMU_CO(CO PO<T>& f,CRUI N_output_start,CRUI N_output_lim)CO{DF_OF_MU_FOR_TR_PO(,RE TRPO<T>(m_N,MO(AN)),,RE_ZERO_FOR_TR_MU_CO_FOR_TR_PO_IF(N_input_start_0_start_1 >= N_output_lim_fixed),RE TRPO<T>(m_N,MO(AN)),TR_MU_CO,PO<T>::OP[](j),N_output_start,if(N_output_lim_fixed > N_output_lim){N_output_lim_fixed = N_output_lim;});}TE <TY T>TRPO<T> TRPO<T>::FFT_TRMU_CO(CO PO<T>& f,CRUI N_output_start,CRUI N_output_lim)CO{DF_OF_FFT_MU_FOR_TR_PO(,RE TRPO<T>(m_N,MO(AN)),,RE_ZERO_FOR_TR_MU_CO_FOR_TR_PO_IF(N_input_start_0_start_1 >= N_output_lim_fixed),RE TRPO<T>(m_N,MO(AN)),RE TRPO<T>(m_N,MO(f0)),TR_MU_CO,PO<T>::OP[](j),N_output_start,N_output_start < N_input_start_0_start_1?0:N_output_start - N_input_start_0_start_1,if(N_output_lim_fixed > N_output_lim){N_output_lim_fixed = N_output_lim;},SET_SHIFTED_VE_FOR_MU(f0,PO<T>::m_f,N_input_start_0,N_input_max_0,N_input_start_1),N_input_start_0_start_1,N_input_start_1 + N_input_max_0 + 1,VE<T> f1 = f.PO<T>::m_f,N_input_start_1,N_input_max_1 + 1,f0,,N_input_start_1,f0[N_input_start_0 + i]*= f1[i],);}TE <TY T>TRPO<T> TRPO<T>::FFT_TRMU_CO(PO<T>&& f,CRUI N_output_start,CRUI N_output_lim)CO{DF_OF_FFT_MU_FOR_TR_PO(,RE TRPO<T>(m_N,MO(AN)),,RE_ZERO_FOR_TR_MU_CO_FOR_TR_PO_IF(N_input_start_0_start_1 >= N_output_lim_fixed),RE TRPO<T>(m_N,MO(AN)),RE TRPO<T>(m_N,MO(f0)),TR_MU_CO,PO<T>::OP[](j),N_output_start,N_output_start < N_input_start_0_start_1?0:N_output_start - N_input_start_0_start_1,if(N_output_lim_fixed > N_output_lim){N_output_lim_fixed = N_output_lim;},SET_SHIFTED_VE_FOR_MU(f0,PO<T>::m_f,N_input_start_0,N_input_max_0,N_input_start_1),N_input_start_0_start_1,N_input_start_1 + N_input_max_0 + 1,VE<T>&& f1 = MO(f.PO<T>::m_f),N_input_start_1,N_input_max_1 + 1,f0,,N_input_start_1,f0[N_input_start_0 + i]*= f1[i],);}TE <TY T> IN TRPO<T>& TRPO<T>::OP/=(CO T& t){PO<T>::OP/=(t);RE *TH;}TE <TY T> IN TRPO<T>& TRPO<T>::OP/=(CO TRPO<T>& f){AS(m_N <= f.m_N);RE OP*=(m_N == f.m_N?Inverse(f):Inverse(TRPO<T>(m_N,f)));}TE <TY T> IN TRPO<T>& TRPO<T>::OP%=(CO T& t){PO<T>::OP%=(t);RE *TH;}TE <TY T> TE <TY P> IN TRPO<T> TRPO<T>::OP+(CO P& f)CO{RE MO(TRPO<T>(*TH)+= f);}TE <TY T> IN TRPO<T> TRPO<T>::OP-()CO{RE MO(TRPO<T>(m_N)-= *TH);}TE <TY T> TE <TY P> IN TRPO<T> TRPO<T>::OP-(CO P& f)CO{RE MO(TRPO<T>(*TH)-= f);}TE <TY T> TE <TY P> IN TRPO<T> TRPO<T>::OP*(CO P& f)CO{RE MO(TRPO<T>(*TH)*= f);}TE <TY T> TE <TY P> IN TRPO<T> TRPO<T>::OP/(CO P& f)CO{RE MO(TRPO<T>(*TH)/= f);}TE <TY T> IN TRPO<T> TRPO<T>::OP%(CO T& t)CO{RE MO(TRPO<T>(*TH)%= t);}TE <TY T> IN VO TRPO<T>::SetTruncation(CRUI N)NE{if(N < m_N){TruncateFinal(N);}m_N = N;}TE <TY T> IN CRUI TRPO<T>::GetTruncation()CO NE{RE m_N;}TE <TY T> IN TRPO<T>& TRPO<T>::TruncateInitial(CRUI N)NE{CRUI SZ = N < PO<T>::m_SZ?N:PO<T>::m_SZ;for(uint i = 0;i < SZ;i++){PO<T>::m_f[i]= 0;}RE *TH;}TE <TY T> IN TRPO<T>& TRPO<T>::TruncateFinal(CRUI N)NE{WH(PO<T>::m_SZ > N){PO<T>::m_f.pop_back();PO<T>::m_SZ--;}RE *TH;}TE <TY T>TRPO<T> Differential(CRUI n,CO TRPO<T>& f){if(f.PO<T>::m_SZ < n){RE TRPO<T>(n < f.m_N?f.m_N - n:1,PO<T>::zero());}VE<T> df(f.PO<T>::m_SZ - n);T coef = T::Factorial(n);uint i = n;WH(i < f.PO<T>::m_SZ){df[i - n]= f[i]* coef;i++;(coef *= i)/=(i - n);}RE TRPO<T>(n < f.m_N?f.m_N - n:1,MO(df));}TE <TY T>TRPO<T> TRDifferential(CO TRPO<T>& f,CRUI N_output_start_plus_one){TRPO<T> f_dif{1 < f.m_N?f.m_N - 1:1};if(N_output_start_plus_one < f.PO<T>::m_SZ){CO uint SZ = f.PO<T>::m_SZ - 1;f_dif.PO<T>::m_f = VE<T>(SZ);for(uint i = N_output_start_plus_one;i < f.PO<T>::m_SZ;i++){f_dif.PO<T>::m_f[i-1]= f.PO<T>::m_f[i]* i;}f_dif.PO<T>::m_SZ = SZ;}RE f_dif;}TE <TY T> IN TRPO<T> Differential(CO TRPO<T>& f){RE TRDifferential<T>(f,1);}TE <TY T>TRPO<T> TRIntegral(CO TRPO<T>& f,CRUI N_output_start){TRPO<T> f_int{f.m_N + 1};if(N_output_start <= f.PO<T>::m_SZ){CO uint SZ = f.PO<T>::m_SZ + 1;f_int.PO<T>::m_f = VE<T>(SZ);for(uint i = N_output_start;i <= f.PO<T>::m_SZ;i++){f_int.PO<T>::m_f[i]= f.PO<T>::m_f[i - 1]/ T(i);}f_int.PO<T>::m_SZ = SZ;}RE f_int;}TE <TY T> IN TRPO<T> Integral(CO TRPO<T>& f){RE TRIntegral<T>(f,1);}TE <TY T>TRPO<T> Inverse(CO TRPO<T>& f){DF_OF_INVERSE_FOR_TR_PO(T,f_inv.TRMinus(f_inv.TRMU_CO(f,PW,PW_2).TRMU(f_inv,PW,PW_2),PW,PW_2));}TE <TY T>TRPO<T> Exp(CO TRPO<T>& f){DF_OF_EXP_FOR_TR_PO(T,f_exp.TRMinus((TRIntegral(Differential(f_exp).TRMU_CO(Inverse(f_exp),PW - 1,PW_2),PW).TRMinus(f,PW,PW_2)).TRMU(f_exp,PW),PW,PW_2));}TE <TY T> IN TRPO<T> Log(CO TRPO<T>& f){AS(f[0]== PO<T>::c_one());RE Integral<T>(Differential<T>(f)/= f);}
DF_OF_PS_OF_MU_OF_PO_PROTH_MOD(P,997269505,Mod);

TE <TY T> IN PO<T>::PO():m_f(),m_SZ(0){}TE <TY T> IN PO<T>::PO(CO PO<T>& f):m_f(f.m_f),m_SZ(f.m_SZ){}TE <TY T> IN PO<T>::PO(PO<T>&& f):m_f(MO(f.m_f)),m_SZ(f.m_SZ){}TE <TY T> IN PO<T>::PO(VE<T> f):m_f(MO(f)),m_SZ(m_f.SZ()){}TE <TY T> IN PO<T>::PO(T t):PO(){if(t != c_zero()){OP[](0)= MO(t);}}TE <TY T> IN PO<T>::PO(CRUI i,T t):PO(){if(t != c_zero()){OP[](i)= MO(t);}}TE <TY T> IN PO<T>& PO<T>::OP=(T n){m_f.clear();m_SZ = 0;OP[](0)= MO(n);RE *TH;}TE <TY T> IN PO<T>& PO<T>::OP=(PO<T> f){m_f = MO(f.m_f);m_SZ = f.m_SZ;RE *TH;}TE <TY T> IN PO<T>& PO<T>::OP=(VE<T> f){m_f = MO(f);m_SZ = m_f.SZ();RE *TH;}TE <TY T> IN CO T& PO<T>::OP[](CRUI i)CO{RE m_SZ <= i?c_zero():m_f[i];}TE <TY T> IN T& PO<T>::OP[](CRUI i){if(m_SZ <= i){CO T& z = c_zero();WH(m_SZ <= i){m_f.push_back(z);m_SZ++;}}RE m_f[i];}TE <TY T> T PO<T>::OP()(CO T& t)CO{T AN =(*TH)[0];T t_pw = c_one();for(uint d = 1;d < m_SZ;d++){AN += m_f[d]*(t_pw *= t);}RE AN;}TE <TY T>PO<T>& PO<T>::OP+=(CO PO<T>& f){if(m_SZ < f.m_SZ){m_f.reserve(f.m_SZ);for(uint i = 0;i < m_SZ;i++){m_f[i]+= f.m_f[i];}for(uint i = m_SZ;i < f.m_SZ;i++){m_f.push_back(f.m_f[i]);}m_SZ = f.m_SZ;}else{for(uint i = 0;i < f.m_SZ;i++){m_f[i]+= f.m_f[i];}}RE *TH;}TE <TY T>PO<T>& PO<T>::OP-=(CO PO<T>& f){if(m_SZ < f.m_SZ){m_f.reserve(f.m_SZ);for(uint i = 0;i < m_SZ;i++){m_f[i]-= f.m_f[i];}for(uint i = m_SZ;i < f.m_SZ;i++){m_f.push_back(- f.m_f[i]);}m_SZ = f.m_SZ;}else{for(uint i = 0;i < f.m_SZ;i++){m_f[i]-= f.m_f[i];}}RE *TH;}TE <TY T>PO<T>& PO<T>::OP*=(CO PO<T>& f){if(m_SZ == 0){RE *TH;}if(f.m_SZ == 0){m_f.clear();m_SZ = 0;RE *TH;}CO uint SZ = m_SZ + f.m_SZ - 1;PO<T> product{};for(uint i = 0;i < SZ;i++){T& product_i = product[i];CO uint j_min = m_SZ > i?0:i - m_SZ + 1;CO uint j_lim = i < f.m_SZ?i + 1:f.m_SZ;for(uint j = j_min;j < j_lim;j++){product_i += m_f[i - j]* f.m_f[j];}}RE *TH = MO(product);}TE <TY T> IN PO<T>& PO<T>::OP*=(PO<T>&& f){RE *TH *= f;};TE <TY T>PO<T>& PO<T>::OP/=(CO T& t){if(t == c_one()){RE *TH;}CO T t_inv{c_one()/ t};for(uint i = 0;i < m_SZ;i++){OP[](i)*= t_inv;}RE *TH;}TE <TY T>PO<T> PO<T>::TP(CO PO<T>& f,CRUI f_TP_SZ){VE<T> f_TP(f_TP_SZ);for(uint d = 0;d < f_TP_SZ;d++){f_TP[d]= f.m_f[f.m_SZ - 1 - d];}RE PO<T>(MO(f_TP));}TE <TY T>PO<T>& PO<T>::OP%=(CO T& t){if(t == c_one()){RE *TH = zero();}for(uint i = 0;i < m_SZ;i++){m_f[i]%= t;}RE *TH;}TE <TY T>bool PO<T>::OP==(CO PO<T>& f)CO{CRUI SZ0 = SZ();CRUI SZ1 = f.SZ();CRUI SZ_max = SZ0 < SZ1?SZ1:SZ0;for(uint i = 0;i < SZ_max;i++){if(OP[](i)!= f[i]){RE false;}}RE true;}TE <TY T>bool PO<T>::OP==(CO T& t)CO{CRUI SZ_max = SZ();CO T& zero = PO<T>::c_zero();for(uint i = 1;i < SZ_max;i++){if(m_f[i]!= zero){RE false;}}RE OP[](0)== t;}TE <TY T> TE<TY P> IN bool PO<T>::OP!=(CO P& f)CO{RE !(*TH == f);}DF_OF_AR_FOR_PO(+,f += *TH);TE <TY T> IN PO<T>& PO<T>::SignInvert(){ReMORedundantZero();for(auto& fi:m_f){fi = -fi;}RE *TH;}TE <TY T> IN PO<T> PO<T>::OP-()CO{RE MO(PO<T>(*TH).SignInvert());}DF_OF_AR_FOR_PO(-,f.SignInvert()+= *TH);DF_OF_AR_FOR_PO(*,f *= *TH);TE <TY T> IN PO<T> PO<T>::OP/(CO T& t)CO{RE MO(PO<T>(*TH)/= t);}TE <TY T> IN PO<T> PO<T>::OP%(CO T& t)CO{RE MO(PO<T>(*TH)%= t);}TE <TY T> IN CO VE<T>& PO<T>::GetCoefficient()CO NE{RE m_f;}TE <TY T> IN CRUI PO<T>::SZ()CO NE{RE m_SZ;}TE <TY T> IN VO PO<T>::resize(CRUI deg_plus)NE{m_f.resize(m_SZ = deg_plus);}TE <TY T> IN VO PO<T>::swap(PO<T>& f){m_f.swap(f.m_f);swap(m_SZ,f.m_SZ);}TE <TY T> IN VO PO<T>::swap(VE<T>& f){m_f.swap(f);m_SZ = m_f.SZ();}TE <TY T>VO PO<T>::ReMORedundantZero(){CO T& z = c_zero();WH(m_SZ > 0?m_f[m_SZ - 1]== z:false){m_f.pop_back();m_SZ--;}RE;}TE <TY T>string PO<T>::Display()CO NE{string s = "(";if(m_SZ > 0){s += to_string(m_f[0]);for(uint i = 1;i < m_SZ;i++){s += "," + to_string(m_f[i]);}}s += ")";RE s;}TE <TY T> IN CO PO<T>& PO<T>::zero(){ST CO PO<T> z{};RE z;}TE <TY T> IN CO PO<T>& PO<T>::one(){ST CO PO<T> o{c_one()};RE o;}TE <TY T> IN CO PO<T>& PO<T>::x(){ST CO PO<T> f{1,c_one()};RE f;}TE <TY T> IN CO T& PO<T>::c_zero(){ST CO T z{0};RE z;}TE <TY T> IN CO T& PO<T>::c_one(){ST CO T o{1};RE o;}TE <TY T> IN CO T& PO<T>::c_minus_one(){ST CO T m{-1};RE m;}TE <TY T>PO<T> Differential(CRUI n,CO PO<T>& f){CRUI SZ = f.SZ();if(SZ < n){RE PO<T>::zero();}VE<T> df(SZ - n);T coef = T::Factorial(n);uint i = n;WH(i < SZ){df[i - n]= f[i]* coef;i++;(coef *= i)/=(i - n);}RE PO<T>(MO(df));}
TE <TY T> IN PO<T>& PO<T>::OP/=(CO PO<T>& f){RE *TH = Quotient(*TH,f);}TE <TY T>PO<T> PO<T>::Quotient(CO PO<T>& f0,CO PO<T>& f1){AS(f1.m_SZ == 0 || f1[f1.m_SZ-1] != c_zero());if(f0.m_SZ < f1.m_SZ){RE PO<T>::zero();}AS(f1.m_SZ != 0);CO uint f0_TP_SZ = f0.m_SZ - f1.m_SZ + 1;CO uint f1_TP_SZ = f0_TP_SZ < f1.m_SZ?f0_TP_SZ:f1.m_SZ;CO TRPO<T> f1_TP_inverse = Inverse(TRPO<T>(f0_TP_SZ,TP(f1,f1_TP_SZ)));TRPO<T> f0_TP{f0_TP_SZ,TP(f0,f0_TP_SZ)};f0_TP *= f1_TP_inverse;for(uint d0 =(f0_TP_SZ + 1)/ 2;d0 < f0_TP_SZ;d0++){::swap(f0_TP[d0],f0_TP[f0_TP_SZ - 1 - d0]);}RE f0_TP;}TE <TY T>PO<T>& PO<T>::OP%=(CO PO<T>& f){if(m_SZ >= f.m_SZ){*TH -=(*TH / f)* f;ReMORedundantZero();}RE *TH;}TE <TY T> IN PO<T> PO<T>::OP/(CO PO<T>& f)CO{RE PO<T>::Quotient(*TH,f);}TE <TY T> IN PO<T> PO<T>::OP%(CO PO<T>& f)CO{RE MO(PO<T>(*TH)%= f);}
#endif

#ifdef DEBUG
  #include "c:/Users/user/Documents/Programming/Mathematics/Combinatorial/FloorSum/a_Body.hpp"
#else
// ../../Poynomial/Truncate/compress.txtを先に貼る。

// 累積和
TE <TY T,int LE>CL BernulliNumberCalculator{PU:T m_val[LE];IN BernulliNumberCalculator(CO bool& negative = true);IN CO T& OP[](CRI i)CO;};
TE <TY T,int LE> IN BernulliNumberCalculator<T,LE>::BernulliNumberCalculator(CO bool& negative):m_val(){TRPO<T> f{LE};for(int i = 0;i < LE;i++){f[i] = T::FactorialInverse(i + 1);}f = Inverse(f);for(int i = 0;i < LE;i++){m_val[i] = MO(f[i] *= T::Factorial(i));}if(!negative && LE > 1){m_val[1] *= -1;}}TE <TY T,int LE> IN CO T& BernulliNumberCalculator<T,LE>::OP[](CRI i)CO{assert(i < LE);RE m_val[i];}

TE <TY T,uint deg_max>PO<T> MonomialSum(CRUI D){AS(D <= deg_max);ST CO BernulliNumberCalculator<T,deg_max+1> B{false};PO<T> AN{};for(uint d = 1;d <= D + 1;d++){AN[d]= T::Combination(D + 1,d)* B[D + 1 - d];}AN /= T{D + 1};RE AN;}

TE <TY INT> CE INT Log(INT N){INT AN = 0;WH(N > 1){N >>= 1;AN++;}RE AN;}

TE <TY INT> IN CE INT PositiveBaseModulo(INT a,CO INT& p){RE MO(a < 0?((((++a)*= -1)%= p)*= -1)+= p - 1:a < p?a:a %= p);}
TE <TY INT> IN CE INT Modulo(INT a,CO INT& p){RE PositiveBaseModulo(MO(a),p < 0?-p:p);}

TE <TY INT> IN CE INT PositiveBaseQuotient(INT a,CO INT& p){RE MO((a < 0?++a -= p:a)/= p);}
TE <TY INT> IN CE INT Quotient(INT a,CO INT& p){RE p < 0?PositiveBaseQuotient(-a,-p):PositiveBaseQuotient(MO(a),p);}

template <typename T , typename INT , int deg_max>
const vector<vector<T>>& FloorSumComposition_Body( const INT& y , const INT& d , const INT& q , const INT& n , const int& D01 , const bool& init )
{
  
  static map<tuple<INT,INT,INT,INT>,vector<vector<T>>> memory{};

  if( init ){

    memory.clear();

  }
  
  auto& answer = memory[{y,d,q,n}];

  if( int( answer.size() ) < D01 ){

    assert( q > 0 && n >=0 && D01 <= deg_max + 1 );
    const T& one = T::one();
    static vector<Polynomial<T>> s{};

    // 累積和多項式の係数sの前計算O(D01^2 log_2 D01)
    while( int( s.size() ) < D01 ){

      const int j = s.size();
      s.push_back( MonomialSum<T,deg_max>( j ) );

      if( j != 0 ){

        // Sn[j]でn-1までの和を考えるためn^jの分を差し引く。
        // ただしj=0の時は0^0=1の分と打ち消し合う。
        s[j][j] -= one;

      }
    
    }

    const T& zero = T::zero();
    static vector<vector<T>> coef_prep{};

    // 再帰係数coefの前計算に使うcoef_prepの前計算O(D01^3)/前計算済みか確認O(D01)
    for( int k = 0 ; k < D01 ; k++ ){

      if( int( coef_prep.size() ) <= k ){

        coef_prep.push_back( vector<T>( k , zero ) );

        for( int j1 = 0 ; j1 < k ; j1++ ){

          for( int j2 = j1 ; j2 < k ; j2++ ){

            coef_prep[k][j1] += T::FactorialInverse( k - j2 ) * T::FactorialInverse( j2 - j1 ) * ( ( k & 1 ) == ( j2 & 1 ) ? 1 : -1 );

          }

          coef_prep[k][j1] *= T::Factorial( k ) * T::FactorialInverse( j1 );

        }

      }

    }

    static vector<vector<vector<vector<T>>>> coef{};

    // 再帰係数coefの前計算O(D01^4)/前計算済みか確認O(D01^2)
    for( int j = 0 ; j < D01 ; j++ ){

      if( int( coef.size() ) <= j ){

        coef.push_back( vector<vector<vector<T>>>() );

      }

      const int k_ulim = D01 - j;
    
      for( int k = 0 ; k < k_ulim ; k++ ){

        if( int( coef[j].size() ) <= k ){

          coef[j].push_back( vector( k , vector<T>( j + 2 , zero ) ) );

          auto& coef_jk = coef[j][k];

          for( int j1 = 0 ; j1 < k ; j1++ ){

            for( int k1 = 0 ; k1 < j + 2 ; k1++ ){

              coef_jk[j1][k1] = coef_prep[k][j1] * s[j][k1];
          
            }

          }

        }

      }

    }
  
    const T n_mod{ n };
    vector<T> Sn( D01 , zero );
  
    // 累積和多項式の値Snの計算O(D01^2)
    for( int j = 0 ; j < D01 ; j++ ){

      Sn[j] = s[j]( n_mod );

    }

    const INT d_0 = Modulo( d , q );
    vector temp( D01 , vector<T>() );

    if( d_0 == 0 ){

      for( int j = 0 ; j < D01 ; j++ ){

        temp[j] = vector<T>( D01 - j , zero );
        temp[j][0] = Sn[j];

      }

    } else if( n != 0 ){

      const INT y_0 = Modulo( y , q );
      const INT m = ( y_0 + d_0 * ( n - 1 ) ) / q;
      const T m_mod{ m };
      vector<T> m_power( D01 , one );

      // mの冪乗m_powerの計算O(D01)
      for( int k = 1 ; k < D01 ; k++ ){

        m_power[k] = m_power[k-1] * m_mod;

      }

      // 再帰深度O(log_2 min(d,q))
      const auto& prev = FloorSumComposition_Body<T,INT,deg_max>( q + d_0 - y_0 - 1 , q , d_0 , m , D01 , false );

      // 再帰式の計算O(D01^4)
      for( int j = 0 ; j < D01 ; j++ ){

        const int k_ulim = D01 - j;
        temp[j] = vector<T>( k_ulim , zero );
      
        for( int k = 0 ; k < k_ulim ; k++ ){

          temp[j][k] = Sn[j] * m_power[k];

          for( int j1 = 0 ; j1 <= k - 1 ; j1++ ){
        
            for( int k1 = 0 ; k1 <= j + 1 ; k1++ ){
        
              temp[j][k] += prev[j1][k1] * coef[j][k][j1][k1];

            }

          }
      
        }

      }

    }

    const T d_1{ Quotient( d , q ) };
    const T y_1{ Quotient( y , q ) };

    // (y,d) ->(y_0,d_0)への帰着O(D01^4)
    for( int j = 0 ; j < D01 ; j++ ){

      if( int( answer.size() ) <= j ){

        answer.push_back( vector<T>() );

      }

      const int k_ulim = D01 - j;

      for( int k = 0 ; k < k_ulim ; k++ ){

        if( int( answer[j].size() ) <= k ){

          answer[j].push_back( zero );

          if( n != 0 ){
            
            T y_1_power = one;

            for( int k1 = 0 ; k1 <= k ; k1++ ){

              const int k2_max = k - k1;
              T d_1_power = one;

              for( int k2 = 0 ; k2 <= k2_max ; k2++ ){

                answer[j][k] += temp[j+k2][k-k1-k2] * T::FactorialInverse( k2 ) * T::FactorialInverse( k1 ) * T::FactorialInverse( k - k1 - k2 ) * y_1_power * d_1_power;
                d_1_power *= d_1;

              }

              y_1_power *= y_1;

            }

            answer[j][k] *= T::Factorial( k );

          }

        }

      }

    }

  }

  // 前計算合計O(D01^4))
  // 再帰計算合計O(D01^4 log_2 min(d,q))
  return answer;

}

template <typename T , typename INT , int deg_max> T FloorSumComposition( const INT& y , const INT& d , const INT& q , const INT& n , const vector<vector<T>>& f )
{

  const int D0 = f.size();
  int D01 = 0;

  for( int j = 0 ; j < D0 ; j++ ){

    D01 = max( D01 , j + int( f[j].size() ) );

  }

  auto& coef = FloorSumComposition_Body<T,INT,deg_max>( y , d , q , n , D01 , true );
  T answer{};

  for( int j = 0 ; j < D0 ; j++ ){

    const int D1 = f[j].size();
    
    for( int k = 0 ; k < D1 ; k++ ){

      answer += f[j][k] * coef[j][k];

    }

  }

  return answer;

}

#endif

/* AAA 常設でないライブラリは以上に挿入する。*/

#define INCLUDE_SUB
#include __FILE__
#else /* INCLUDE_LIBRARY */
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize ( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN
#define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } }
#define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )
#define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )
#ifdef USE_GETLINE
#define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
#define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ )
#define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ )
#define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#else
#define SET( ... ) VariadicCin( cin , __VA_ARGS__ )
#define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ )
#define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); }
#define CIN_A( LL , I , N , ... ) VE<LL> __VA_ARGS__; SET_A( I , N , __VA_ARGS__ )
#define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE<VE<LL>> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); }
#endif
#define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX )
#define SOLVE_ONLY 
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
#define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ )
#define CERR( ... ) 
#define CERRNS( ... ) 
#define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL
#define CERR_A( I , N , A ) 
#define TLE( CONDITION ) if( !( CONDITION ) ){ ll TLE_VAR = 1; while( TLE_VAR != 0 ){ ( TLE_VAR += 2 ) %= int( 1e9 ); } COUT( TLE_VAR ); }
#define MLE( CONDITION ) if( !( CONDITION ) ){ vector<vector<ll>> MLE_VAR{}; REPEAT( 1e6 ){ MLE_VAR.push_back( vector<ll>( 1e6 ) ); } COUT( MLE_VAR ); }
#define OLE( CONDITION ) if( !( CONDITION ) ){ REPEAT( 1e8 ){ COUT( "OLE" ); } }
#endif
#ifdef REACTIVE
#ifdef DEBUG
#define RSET( A , ... ) A = __VA_ARGS__
#else
#define RSET( A , ... ) SET( A )
  #endif
  #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ )
  #define ENDL endl
#else
  #define ENDL "\n"
#endif
#include <bits/stdc++.h>
using namespace std;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = 0.0 , current_time = 0.0; int loop_count = 0
#define CURRENT_TIME ( current_time = static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 ) )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 )
#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE
#define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); }
#define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } }
#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX )
#define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector<decldecay_t( MAX )>( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- )
#define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN()
#define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS )
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ , false ); auto answer = Answer( __VA_ARGS__ , false ); bool match = naive == answer; CERR( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ CERR( "出力の不一致が検出されました。" ); RE; }

/* 圧縮用 */
#define TE template
#define TY typename
#define US using
#define ST static
#define AS assert
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return 
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define LE length
#define PW Power
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define VI virtual 
#define IS basic_istream<char,Traits>
#define OS basic_ostream<char,Traits>
#define ST_AS static_assert
#define reMO_CO remove_const
#define is_COructible_v is_constructible_v
#define rBE rbegin

/* 型のエイリアス */
#define decldecay_t(VAR)decay_t<decltype(VAR)>
TE <TY F,TY...Args> US ret_t = decltype(declval<F>()(declval<Args>()...));
TE <TY T> US inner_t = TY T::type;
US uint = unsigned int;
US ll = long long;
US ull = unsigned long long;
US ld = long double;
US lld = __float128;
TE <TY INT> US T2 = pair<INT,INT>;
TE <TY INT> US T3 = tuple<INT,INT,INT>;
TE <TY INT> US T4 = tuple<INT,INT,INT,INT>;
US path = pair<int,ll>;

/* VVV 常設ライブラリは以下に挿入する。*/
#ifdef DEBUG
  #include "C:/Users/user/Documents/Programming/Contest/Template/Local/a_Body.hpp"
#else
/* Random (1KB)*/
ll GetRand(CRI Rand_min,CRI Rand_max){AS(Rand_min <= Rand_max);ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;}

/* Set (1KB)*/
#define DC_OF_HASH(...)struct hash<__VA_ARGS__>{IN size_t OP()(CO __VA_ARGS__& n)CO;};
CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;};
TE <TY T>US Set = conditional_t<is_COructible_v<unordered_set<T>>,unordered_set<T>,conditional_t<is_ordered::value<T>,set<T>,VO>>;

/* Tuple (5KB)*/
#define DF_OF_AR_FOR_TUPLE(OPR)TE <TY T,TY U,TE <TY...> TY V> IN auto OP OPR ## =(V<T,U>& t0,CO V<T,U>& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);RE t0;}TE <TY T,TY U,TY V> IN tuple<T,U,V>& OP OPR ## =(tuple<T,U,V>& t0,CO tuple<T,U,V>& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);RE t0;}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W>& OP OPR ## =(tuple<T,U,V,W>& t0,CO tuple<T,U,V,W>& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);get<3>(t0)OPR ## = get<3>(t1);RE t0;}TE <TY ARG,TY T,TY U,TE <TY...> TY V> IN auto OP OPR ## =(V<T,U>& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;RE t0;}TE <TY ARG,TY T,TY U,TY V> IN tuple<T,U,V>& OP OPR ## =(tuple<T,U,V>& t0,CO ARG& t1){get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;RE t0;}TE <TY ARG,TY T,TY U,TY V,TY W> IN tuple<T,U,V,W>& OP OPR ## =(tuple<T,U,V,W>& t0,CO ARG& t1){get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;get<3>(t0)OPR ## = t1;RE t0;}TE <TE <TY...> TY V,TY...ARGS,TY ARG> IN auto OP OPR(CO V<ARGS...>& t0,CO ARG& t1)-> decldecay_t((get<0>(t0),t0)){auto t = t0;RE MO(t OPR ## = t1);}
#define DF_OF_INCREMENT_FOR_TUPLE(INCR)TE <TY T,TY U,TE <TY...> TY V> IN auto OP INCR(V<T,U>& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);RE t;}TE <TY T,TY U,TY V> IN tuple<T,U,V>& OP INCR(tuple<T,U,V>& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);RE t;}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W>& OP INCR(tuple<T,U,V,W>& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);INCR get<3>(t);RE t;}
TE <CL Traits,TY T> IN IS& OP>>(IS& is,tuple<T>& arg){RE is >> get<0>(arg);}TE <CL Traits,TY T,TY U,TE <TY...> TY V> IN auto OP>>(IS& is,V<T,U>& arg)-> decltype((get<0>(arg),is))&{RE is >> get<0>(arg)>> get<1>(arg);}TE <CL Traits,TY T,TY U,TY V> IN IS& OP>>(IS& is,tuple<T,U,V>& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg);}TE <CL Traits,TY T,TY U,TY V,TY W> IN IS& OP>>(IS& is,tuple<T,U,V,W>& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg)>> get<3>(arg);}TE <CL Traits,TY T> IN OS& OP<<(OS& os,CO tuple<T>& arg){RE os << get<0>(arg);}TE <CL Traits,TY T,TY U,TE <TY...> TY V> IN auto OP<<(OS& os,CO V<T,U>& arg)-> decltype((get<0>(arg),os))&{RE os << get<0>(arg)<< " " << get<1>(arg);}TE <CL Traits,TY T,TY U,TY V> IN OS& OP<<(OS& os,CO tuple<T,U,V>& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg);}TE <CL Traits,TY T,TY U,TY V,TY W> IN OS& OP<<(OS& os,CO tuple<T,U,V,W>& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg)<< " " << get<3>(arg);}DF_OF_AR_FOR_TUPLE(+);TE <TY T,TY U,TE <TY...> TY V> IN auto OP-(CO V<T,U>& t)-> decltype(get<0>(t),t){RE{-get<0>(t),-get<1>(t)};}TE <TY T,TY U,TY V> IN tuple<T,U,V> OP-(CO tuple<T,U,V>& t){RE{-get<0>(t),-get<1>(t),-get<2>(t)};}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W> OP-(CO tuple<T,U,V,W>& t){RE{-get<0>(t),-get<1>(t),-get<2>(t),-get<3>(t)};}DF_OF_AR_FOR_TUPLE(-);DF_OF_AR_FOR_TUPLE(*);DF_OF_AR_FOR_TUPLE(/);DF_OF_AR_FOR_TUPLE(%);DF_OF_INCREMENT_FOR_TUPLE(++);DF_OF_INCREMENT_FOR_TUPLE(--);

#define DF_OF_HASH_FOR_TUPLE(PAIR)TE <TY T,TY U> IN size_t hash<PAIR<T,U>>::OP()(CO PAIR<T,U>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<T> h0;ST CO hash<U> h1;RE(h0(get<0>(n))* seed)^ h1(get<1>(n));}
TE <TY T> DC_OF_HASH(tuple<T>);TE <TY T,TY U> DC_OF_HASH(pair<T,U>);TE <TY T,TY U> DC_OF_HASH(tuple<T,U>);TE <TY T,TY U,TY V> DC_OF_HASH(tuple<T,U,V>);TE <TY T,TY U,TY V,TY W> DC_OF_HASH(tuple<T,U,V,W>);
TE <TY T> IN size_t hash<tuple<T>>::OP()(CO tuple<T>& n)CO{ST CO hash<T> h;RE h(get<0>(n));}DF_OF_HASH_FOR_TUPLE(pair);DF_OF_HASH_FOR_TUPLE(tuple);TE <TY T,TY U,TY V> IN size_t hash<tuple<T,U,V>>::OP()(CO tuple<T,U,V>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<pair<T,U>> h01;ST CO hash<V> h2;RE(h01({get<0>(n),get<1>(n)})* seed)^ h2(get<2>(n));}TE <TY T,TY U,TY V,TY W> IN size_t hash<tuple<T,U,V,W>>::OP()(CO tuple<T,U,V,W>& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash<pair<T,U>> h01;ST CO hash<pair<V,W>> h23;RE(h01({get<0>(n),get<1>(n)})* seed)^ h23({get<2>(n),get<3>(n)});}

/* Vector (2KB)*/
#define DF_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN OS& OP<<(OS& os,CO V<Arg>& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;}
#define DF_OF_AR_FOR_VE(V,OPR)TE <TY T> IN V<T>& OP OPR ## =(V<T>& a,CO T& t){for(auto& s:a){s OPR ## = t;}RE a;}TE <TY T> IN V<T>& OP OPR ## =(V<T>& a0,CO V<T>& a1){AS(a0.SZ()<= a1.SZ());auto IT0 = a0.BE(),EN0 = a0.EN();auto IT1 = a1.BE();WH(IT0 != EN0){*(IT0++)OPR ## = *(IT1++);}RE a0;}TE <TY T,TY U> IN V<T> OP OPR(V<T> a,CO U& u){RE MO(a OPR ## = u);}
#define DF_OF_INCREMENT_FOR_VE(V,INCR)TE <TY T> IN V<T>& OP INCR(V<T>& a){for(auto& i:a){INCR i;}RE a;}
#define DF_OF_ARS_FOR_VE(V)DF_OF_AR_FOR_VE(V,+);DF_OF_AR_FOR_VE(V,-);DF_OF_AR_FOR_VE(V,*);DF_OF_AR_FOR_VE(V,/);DF_OF_AR_FOR_VE(V,%);DF_OF_INCREMENT_FOR_VE(V,++);DF_OF_INCREMENT_FOR_VE(V,--);TE <TY T> IN V<T> OP*(CO T& scalar,V<T> v){for(auto& t:v){t *= scalar;}RE MO(v);}
DF_OF_COUT_FOR_VE(VE);DF_OF_COUT_FOR_VE(LI);DF_OF_ARS_FOR_VE(VE);DF_OF_ARS_FOR_VE(LI);IN VO VariadicResize(CRI SZ){}TE <TY Arg,TY... ARGS> IN VO VariadicResize(CRI SZ,Arg& arg,ARGS&... args){arg.resize(SZ);VariadicResize(SZ,args...);}TE <TY V> IN auto Get(V& a){RE[&](CRI i = 0)-> CO decldecay_t(a[0])&{RE a[i];};}TE <TY T = int> IN VE<T> id(CRI SZ){VE<T> AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;}TE <TY T> VO Sort(VE<T>& a,CO bool& reversed = false){if(reversed){ST auto comp =[](CO T& t0,CO T& t1){RE t1 < t0;};sort(a.BE(),a.EN(),comp);}else{sort(a.BE(),a.EN());}}TE <TY T> IN VE<int> IndexSort(CO VE<T>& a,CO bool& reversed = false){auto index = id<int>(a.SZ());if(reversed){sort(index.BE(),index.EN(),[&](CRI i,CRI j){RE a[j]< a[i];});}else{sort(index.BE(),index.EN(),[&](CRI i,CRI j){RE a[i]< a[j];});}RE index;}TE <TY T,TY U = T> IN U Sum(CO VE<T>& a){U AN{};for(auto& x:a){AN += x;}RE AN;}TE <TY T,TY U = T> IN U Product(CO VE<T>& a){U AN{};for(auto& x:a){AN *= x;}RE AN;}

/* Map (1KB)*/
#define DF_OF_AR_FOR_MAP(MAP,OPR)TE <TY T,TY U> IN MAP<T,U>& OP OPR ## =(MAP<T,U>& a,CO pair<T,U>& v){a[v.first]OPR ## = v.second;RE a;}TE <TY T,TY U> IN MAP<T,U>& OP OPR ## =(MAP<T,U>& a0,CO MAP<T,U>& a1){for(auto&[t,u]:a1){a0[t]OPR ## = u;}RE a0;}TE <TY T,TY U,TY ARG> IN MAP<T,U> OP OPR(MAP<T,U> a,CO ARG& arg){RE MO(a OPR ## = arg);}
#define DF_OF_ARS_FOR_MAP(MAP)DF_OF_AR_FOR_MAP(MAP,+);DF_OF_AR_FOR_MAP(MAP,-);DF_OF_AR_FOR_MAP(MAP,*);DF_OF_AR_FOR_MAP(MAP,/);DF_OF_AR_FOR_MAP(MAP,%);
TE <TY T,TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>;
DF_OF_ARS_FOR_MAP(map);DF_OF_ARS_FOR_MAP(unordered_map);

/* StdStream (2KB)*/
TE <CL Traits> IN IS& VariadicCin(IS& is){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicCin(IS& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);}TE <CL Traits> IN IS& VariadicSet(IS& is,CRI i){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicSet(IS& is,CRI i,Arg& arg,ARGS&... args){RE VariadicSet(is >> arg[i],i,args...);}TE <CL Traits> IN IS& VariadicGetline(IS& is,CO char& separator){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN IS& VariadicGetline(IS& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}TE <CL Traits,TY Arg> IN OS& VariadicCout(OS& os,Arg&& arg){RE os << forward<Arg>(arg);}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN OS& VariadicCout(OS& os,Arg1&& arg1,Arg2&& arg2,ARGS&&... args){RE VariadicCout(os << forward<Arg1>(arg1)<< " ",forward<Arg2>(arg2),forward<ARGS>(args)...);}TE <CL Traits,TY Arg> IN OS& VariadicCoutNonSep(OS& os,Arg&& arg){RE os << forward<Arg>(arg);}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN OS& VariadicCoutNonSep(OS& os,Arg1&& arg1,Arg2&& arg2,ARGS&&... args){RE VariadicCoutNonSep(os << forward<Arg1>(arg1),forward<Arg2>(arg2),forward<ARGS>(args)...);}TE <CL Traits,TY ARRAY> IN OS& CoutArray(OS& os,CRI i_start,CRI i_ulim,ARRAY&& a){for(int i = i_start;i < i_ulim;i++){(i == i_start?os:(os << " "))<< a[i];}RE os;}

/* ConstexprModulo (7KB)*/
CEXPR(uint,P,998244353);
#define RP Represent
#define DeRP Derepresent

TE <uint M,TY INT> CE INT Residue(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE <TY INT> CE INT& ResidueP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;}
TE <uint M> CL Mod;TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 1e6;ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE int g_order_minus_1 = M - 2;ST CE int g_order_minus_1_neg = -g_order_minus_1;};
#define SFINAE_FOR_MOD enable_if_t<is_COructible_v<uint,decay_t<T>>>*
#define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod<M>& n)CO NE
#define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod<M> OP OPR(Mod<M> n)CO EX;
#define DF_OF_CM_FOR_MOD(OPR)TE <uint M> CE bool Mod<M>::OP OPR(CO Mod<M>& n)CO NE{RE m_n OPR n.m_n;}
#define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE <uint M> CE Mod<M> Mod<M>::OP OPR(Mod<M> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <uint M,TY T,SFINAE_FOR_MOD = nullptr> CE Mod<M> OP OPR(T n0,CO Mod<M>& n1)EX{RE MO(Mod<M>(MO(n0))OPR ## = n1);}
TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <TY T,SFINAE_FOR_MOD = nullptr> CE Mod(T n)NE;CE Mod<M>& OP=(Mod<M> n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(Mod<M> n);TE <TY INT> CE Mod<M>& OP<<=(INT n);TE <TY INT> CE Mod<M>& OP>>=(INT n);CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE <TY INT> CE Mod<M> OP^(INT EX)CO;TE <TY INT> CE Mod<M> OP<<(INT n)CO;TE <TY INT> CE Mod<M> OP>>(INT n)CO;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;IN Mod<M>& Invert();TE <TY INT> CE Mod<M>& PW(INT EX);CE VO swap(Mod<M>& n)NE;CE CRUI RP()CO NE;ST CE Mod<M> DeRP(uint n)NE;ST IN CO Mod<M>& Inverse(CRUI n);ST IN CO Mod<M>& Factorial(CRUI n);ST IN CO Mod<M>& FactorialInverse(CRUI n);ST IN Mod<M> Combination(CRUI n,CRUI i);ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;ST IN CE uint GetModulo()NE;TE <TY INT> CE Mod<M>& PositivePW(INT EX)NE;TE <TY INT> CE Mod<M>& NonNegativePW(INT EX)NE;US COants = COantsForMod<M>;};
US MP = Mod<P>;
TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <TY T,SFINAE_FOR_MOD> CE Mod<M>::Mod(T n)NE:m_n(Residue<M>(MO(n))){}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M> n)NE{m_n = MO(n.m_n);RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{(m_n += n.m_n)< M?m_n:m_n -= M;RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP-=(CO Mod<M>& n)NE{m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{m_n = MO(ull(m_n)* n.m_n)% M;RE *TH;}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:ResidueP(m_n_copy));RE *TH;}TE <uint M> IN Mod<M>& Mod<M>::OP/=(Mod<M> n){RE OP*=(n.Invert());}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP<<=(INT n){AS(n >= 0);RE *TH *= Mod<M>(2).NonNegativePW(MO(n));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP++(int)NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE <uint M> CE Mod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP^(INT EX)CO{RE MO(Mod<M>(*TH).PW(MO(EX)));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP<<(INT n)CO{RE MO(Mod<M>(*TH)<<= MO(n));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP>>(INT n)CO{RE MO(Mod<M>(*TH)>>= MO(n));}TE <uint M> CE Mod<M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{m_n > 0?m_n = M - m_n:m_n;RE *TH;}TE <uint M> IN Mod<M>& Mod<M>::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COants::g_memory_LE?(m_n = Inverse(m_n).m_n,*TH):((m_n_neg = M - m_n)< COants::g_memory_LE)?(m_n = M - Inverse(m_n_neg).m_n,*TH):NonNegativePW(COants::g_order_minus_1);}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PositivePW(INT EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::NonNegativePW(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePW(MO(EX));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(ll(MO(EX %= COants::g_M_minus))* COants::g_order_minus_1_neg %COants::g_M_minus):NonNegativePW(MO(EX));}TE <uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CRUI n){AS(n < M);ST VE<Mod<M>> memory ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(DeRP(M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M));LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::Factorial(CRUI n){if(M <= n){RE zero();}ST VE<Mod<M>> memory ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(memory[LE_curr - 1]* LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CRUI n){ST VE<Mod<M>> memory ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(memory[LE_curr - 1]* Inverse(LE_curr));LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CRUI n,CRUI i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE <uint M> CE CRUI Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(uint n)NE{Mod<M> n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{1};RE o;}TE <uint M> IN CE uint Mod<M>::GetModulo()NE{RE M;}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M,TY INT> CE Mod<M> PW(Mod<M> n,INT EX){RE MO(n.PW(MO(EX)));}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M>& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE <uint M,CL Traits> IN IS& OP>>(IS& is,Mod<M>& n){ll m;is >> m;n = m;RE is;}TE <uint M,CL Traits> IN OS& OP<<(OS& os,CO Mod<M>& n){RE os << n.RP();}
#define DF_OF_HASH_FOR_MOD(MOD)IN size_t hash<MOD>::OP()(CO MOD& n)CO{ST CO hash<decldecay_t(n.RP())> h;RE h(n.RP());}
TE <uint M> DC_OF_HASH(Mod<M>); TE <uint M> DF_OF_HASH_FOR_MOD(Mod<M>);

/* Loop (1KB)*/
TE <TY INT> bool NextLoop(CRI SZ,CO VE<INT>& lower_bound,CO VE<INT>& upper_limit,VE<INT>& index){int depth = 0;WH(depth < SZ){if(++index[depth]< upper_limit[depth]){break;}index[depth]= lower_bound[depth];depth++;}RE depth < SZ;}TE <TY INT> bool NextLoop(CO VE<INT>& lower_bound,CO VE<INT>& upper_limit,VE<INT>& index){RE NextLoop(index.SZ(),lower_bound,upper_limit,index);}TE <TY INT> bool NextLoopEq(CRI SZ,CO VE<INT>& lower_bound,CO VE<INT>& upper_bound,VE<INT>& index){int depth = 0;WH(depth < SZ){if(++index[depth]<= upper_bound[depth]){break;}index[depth]= lower_bound[depth];depth++;}RE depth < SZ;}TE <TY INT> bool NextLoopEq(CO VE<INT>& lower_bound,CO VE<INT>& upper_bound,VE<INT>& index){RE NextLoopEq(index.SZ(),lower_bound,upper_bound,index);}

/* string (1KB)*/
TE <TY INT> IN char IntToChar(CO INT& i,CO char& c = 'a'){RE c + i;}TE <TY INT> IN INT CharToInt(CO char& i){RE i -(i < 'a'?'A':'a');}TE <TY INT>string ArrayToString(CO VE<INT>& A,CO char& c = 'a'){CO int N = A.SZ();string S(N,c);for(int i = 0;i < N;i++){S[i]= IntToChar<INT>(A[i],c);}RE S;}TE <TY INT>VE<INT> StringToArray(CO string& S){CO int N = S.SZ();VE<int> A(N);for(int i = 0;i < N;i++){A[i]= CharToInt<INT>(S[i]);}RE A;}
#endif
/* AAA 常設ライブラリは以上に挿入する。*/

#define INCLUDE_LIBRARY
#include __FILE__
#endif /* INCLUDE_LIBRARY */
#endif /* INCLUDE_SUB */
#endif /* INCLUDE_MAIN */
0