結果
問題 | No.2996 Floor Sum |
ユーザー | 👑 hos.lyric |
提出日時 | 2024-12-21 00:18:27 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 378 ms / 5,000 ms |
コード長 | 7,544 bytes |
コンパイル時間 | 955 ms |
コンパイル使用メモリ | 106,316 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-12-21 18:07:09 |
合計ジャッジ時間 | 2,355 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 5 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 368 ms
6,820 KB |
testcase_04 | AC | 88 ms
6,816 KB |
testcase_05 | AC | 5 ms
6,820 KB |
testcase_06 | AC | 13 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 3 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 3 ms
6,820 KB |
testcase_12 | AC | 4 ms
6,816 KB |
testcase_13 | AC | 378 ms
6,820 KB |
ソースコード
// https://loj.ac/p/138 #include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <functional> #include <iostream> #include <map> #include <numeric> #include <queue> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } //////////////////////////////////////////////////////////////////////////////// template <unsigned M_> struct ModInt { static constexpr unsigned M = M_; unsigned x; constexpr ModInt() : x(0U) {} constexpr ModInt(unsigned x_) : x(x_ % M) {} constexpr ModInt(unsigned long long x_) : x(x_ % M) {} constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {} constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {} ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; } ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; } ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; } ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); } ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b; } ModInt inv() const { unsigned a = M, b = x; int y = 0, z = 1; for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; } assert(a == 1U); return ModInt(y); } ModInt operator+() const { return *this; } ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; } ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); } ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); } ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); } ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); } template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); } template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); } template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); } template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); } explicit operator bool() const { return x; } bool operator==(const ModInt &a) const { return (x == a.x); } bool operator!=(const ModInt &a) const { return (x != a.x); } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; } }; //////////////////////////////////////////////////////////////////////////////// constexpr unsigned MO = 998244353; using Mint = ModInt<MO>; constexpr int LIM_INV = 110; Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV]; void prepare() { inv[1] = 1; for (int i = 2; i < LIM_INV; ++i) { inv[i] = -((Mint::M / i) * inv[Mint::M % i]); } fac[0] = invFac[0] = 1; for (int i = 1; i < LIM_INV; ++i) { fac[i] = fac[i - 1] * i; invFac[i] = invFac[i - 1] * inv[i]; } } Mint binom(Int n, Int k) { if (n < 0) { if (k >= 0) { return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k); } else if (n - k >= 0) { return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k); } else { return 0; } } else { if (0 <= k && k <= n) { assert(n < LIM_INV); return fac[n] * invFac[k] * invFac[n - k]; } else { return 0; } } } template <class S, class T> T pathUnder(S m, S a, S b, S n, T e, T x, T y) { assert(m >= 1); assert(a >= 0); assert(b >= 0); assert(n >= 0); S c = (a * n + b) / m; T pre = e, suf = e; for (; ; ) { const S p = a / m; a %= m; x = x * y.pow(p); const S q = b / m; b %= m; pre = pre * y.pow(q); c -= (p * n + q); if (c == 0) return pre * x.pow(n) * suf; const S d = (m * c - b - 1) / a + 1; suf = y * x.pow(n - d) * suf; b = m - b - 1 + a; swap(m, a); n = c - 1; c = d; swap(x, y); } } constexpr int MAX = 11; Mint bn[MAX][MAX]; int K, L; struct Data { Mint dx, dy; Mint sum[MAX][MAX]; Data() : dx(0), dy(0), sum{} {} friend Data operator*(const Data &a, const Data &b) { Data c; c.dx = a.dx + b.dx; c.dy = a.dy + b.dy; for (int k = 0; k <= K; ++k) for (int l = 0; l <= L; ++l) { c.sum[k][l] += a.sum[k][l]; } Mint tmp[MAX][MAX]; for (int k = 0; k <= K; ++k) for (int l = 0; l <= L; ++l) { Mint pw = 1; for (int kk = 0; kk <= k; ++kk) { tmp[k][l] += bn[k][kk] * pw * b.sum[k - kk][l]; pw *= a.dx; } } for (int k = 0; k <= K; ++k) for (int l = 0; l <= L; ++l) { Mint pw = 1; for (int ll = 0; ll <= l; ++ll) { c.sum[k][l] += bn[l][ll] * pw * tmp[k][l - ll]; pw *= a.dy; } } return c; } Data pow(Int e) const { Data a = *this, b; for (; ; a = a * a) { if (e & 1) b = b * a; if (!(e >>= 1)) return b; } } }; // floor(a / b) template <class T> T divFloor(T a, T b) { return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0); } // ceil(a / b) template <class T> T divCeil(T a, T b) { return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0); } int main() { prepare(); for (int n = 0; n < MAX; ++n) { bn[n][0] = bn[n][n] = 1; for (int k = 1; k < n; ++k) { bn[n][k] = bn[n - 1][k - 1] + bn[n - 1][k]; } } for (int numCases; ~scanf("%d", &numCases); ) { for (int caseId = 1; caseId <= numCases; ++caseId) { Int N, A, B, C; // scanf("%lld%lld%lld%lld%d%d", &N, &A, &B, &C, &K, &L); scanf("%d%d%lld%lld%lld%lld", &K, &L, &N, &C, &A, &B); bool neg = false; if (A < 0) { neg = true; B += A * N; A = -A; } Int BQ = B / C; Int BR = B % C; if (BR < 0) { BQ -= 1; BR += C; } // cerr<<N<<" "<<A<<" "<<make_pair(BQ,BR)<<" "<<C<<" "<<K<<" "<<L<<endl; Data X, Y; X.dx = 1; X.sum[0][0] = 1; Y.dy = 1; const Data res = pathUnder<__int128>(C, A, BR, N + 1, Data(), X, Y); // printf("%u\n", res.sum[K][L].x); Mint ans = 0; if (neg) { // (N-i)^K (BQ+j)^L for (int k = 0; k <= K; ++k) for (int l = 0; l <= L; ++l) { ans += bn[K][k] * bn[L][l] * Mint(N).pow(K - k) * Mint(BQ).pow(L - l) * (k&1?-1:+1) * res.sum[k][l]; } } else { // i^K (BQ+j)^L for (int l = 0; l <= L; ++l) { ans += bn[L][l] * Mint(BQ).pow(l) * res.sum[K][L - l]; } } printf("%u\n", ans.x); } #ifndef LOCAL break; #endif } return 0; }