結果
| 問題 |
No.2996 Floor Sum
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-12-21 00:18:27 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 378 ms / 5,000 ms |
| コード長 | 7,544 bytes |
| コンパイル時間 | 955 ms |
| コンパイル使用メモリ | 106,316 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-12-21 18:07:09 |
| 合計ジャッジ時間 | 2,355 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 12 |
ソースコード
// https://loj.ac/p/138
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
constexpr int LIM_INV = 110;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];
void prepare() {
inv[1] = 1;
for (int i = 2; i < LIM_INV; ++i) {
inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
}
fac[0] = invFac[0] = 1;
for (int i = 1; i < LIM_INV; ++i) {
fac[i] = fac[i - 1] * i;
invFac[i] = invFac[i - 1] * inv[i];
}
}
Mint binom(Int n, Int k) {
if (n < 0) {
if (k >= 0) {
return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
} else if (n - k >= 0) {
return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
} else {
return 0;
}
} else {
if (0 <= k && k <= n) {
assert(n < LIM_INV);
return fac[n] * invFac[k] * invFac[n - k];
} else {
return 0;
}
}
}
template <class S, class T> T pathUnder(S m, S a, S b, S n, T e, T x, T y) {
assert(m >= 1); assert(a >= 0); assert(b >= 0); assert(n >= 0);
S c = (a * n + b) / m;
T pre = e, suf = e;
for (; ; ) {
const S p = a / m; a %= m; x = x * y.pow(p);
const S q = b / m; b %= m; pre = pre * y.pow(q);
c -= (p * n + q);
if (c == 0) return pre * x.pow(n) * suf;
const S d = (m * c - b - 1) / a + 1;
suf = y * x.pow(n - d) * suf;
b = m - b - 1 + a; swap(m, a); n = c - 1; c = d; swap(x, y);
}
}
constexpr int MAX = 11;
Mint bn[MAX][MAX];
int K, L;
struct Data {
Mint dx, dy;
Mint sum[MAX][MAX];
Data() : dx(0), dy(0), sum{} {}
friend Data operator*(const Data &a, const Data &b) {
Data c;
c.dx = a.dx + b.dx;
c.dy = a.dy + b.dy;
for (int k = 0; k <= K; ++k) for (int l = 0; l <= L; ++l) {
c.sum[k][l] += a.sum[k][l];
}
Mint tmp[MAX][MAX];
for (int k = 0; k <= K; ++k) for (int l = 0; l <= L; ++l) {
Mint pw = 1;
for (int kk = 0; kk <= k; ++kk) {
tmp[k][l] += bn[k][kk] * pw * b.sum[k - kk][l];
pw *= a.dx;
}
}
for (int k = 0; k <= K; ++k) for (int l = 0; l <= L; ++l) {
Mint pw = 1;
for (int ll = 0; ll <= l; ++ll) {
c.sum[k][l] += bn[l][ll] * pw * tmp[k][l - ll];
pw *= a.dy;
}
}
return c;
}
Data pow(Int e) const {
Data a = *this, b;
for (; ; a = a * a) {
if (e & 1) b = b * a;
if (!(e >>= 1)) return b;
}
}
};
// floor(a / b)
template <class T> T divFloor(T a, T b) {
return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);
}
// ceil(a / b)
template <class T> T divCeil(T a, T b) {
return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);
}
int main() {
prepare();
for (int n = 0; n < MAX; ++n) {
bn[n][0] = bn[n][n] = 1;
for (int k = 1; k < n; ++k) {
bn[n][k] = bn[n - 1][k - 1] + bn[n - 1][k];
}
}
for (int numCases; ~scanf("%d", &numCases); ) { for (int caseId = 1; caseId <= numCases; ++caseId) {
Int N, A, B, C;
// scanf("%lld%lld%lld%lld%d%d", &N, &A, &B, &C, &K, &L);
scanf("%d%d%lld%lld%lld%lld", &K, &L, &N, &C, &A, &B);
bool neg = false;
if (A < 0) {
neg = true;
B += A * N;
A = -A;
}
Int BQ = B / C;
Int BR = B % C;
if (BR < 0) {
BQ -= 1;
BR += C;
}
// cerr<<N<<" "<<A<<" "<<make_pair(BQ,BR)<<" "<<C<<" "<<K<<" "<<L<<endl;
Data X, Y;
X.dx = 1;
X.sum[0][0] = 1;
Y.dy = 1;
const Data res = pathUnder<__int128>(C, A, BR, N + 1, Data(), X, Y);
// printf("%u\n", res.sum[K][L].x);
Mint ans = 0;
if (neg) {
// (N-i)^K (BQ+j)^L
for (int k = 0; k <= K; ++k) for (int l = 0; l <= L; ++l) {
ans += bn[K][k] * bn[L][l] * Mint(N).pow(K - k) * Mint(BQ).pow(L - l) * (k&1?-1:+1) * res.sum[k][l];
}
} else {
// i^K (BQ+j)^L
for (int l = 0; l <= L; ++l) {
ans += bn[L][l] * Mint(BQ).pow(l) * res.sum[K][L - l];
}
}
printf("%u\n", ans.x);
}
#ifndef LOCAL
break;
#endif
}
return 0;
}