結果
問題 | No.2996 Floor Sum |
ユーザー |
![]() |
提出日時 | 2024-12-21 19:03:46 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 239 ms / 5,000 ms |
コード長 | 17,488 bytes |
コンパイル時間 | 18,630 ms |
コンパイル使用メモリ | 379,176 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-21 19:04:07 |
合計ジャッジ時間 | 15,392 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 12 |
コンパイルメッセージ
warning: associated constants `PRIMITIVE_ROOT` and `ORDER` are never used --> src/main.rs:487:11 | 471 | impl<const M: u32> ModInt<{ M }> { | -------------------------------- associated constants in this implementation ... 487 | const PRIMITIVE_ROOT: u32 = primitive_root(M); | ^^^^^^^^^^^^^^ 488 | const ORDER: usize = 1 << (M - 1).trailing_zeros(); | ^^^^^ | = note: `#[warn(dead_code)]` on by default
ソースコード
fn main() {input! {t: usize,ask: [(usize, usize, i64, i64, i64, i64); t],}if t <= 5 {solve::<21, 11>(ask);} else {solve::<5, 3>(ask);}}fn solve<const A: usize, const B: usize>(ask: Vec<(usize, usize, i64, i64, i64, i64)>) {let pc = Precalc::new(100);for (p, q, n, m, a, b) in ask {let c = a.div_euclid(m);let a = a - c * m;let d = b.div_euclid(m);let b = b - d * m;let res = under_fold(n as usize + 1,m as usize,a as usize,b as usize,FloorSum::<M, A, B>::dx(),FloorSum::<M, A, B>::dy(),).flush();let c = M::from(c);let d = M::from(d);let mut ans = M::zero();for i in 0..=q {for j in 0..=(q - i) {let k = q - i - j;let mut v = res[p + j][i];v *= c.pow(j as u64) * d.pow(k as u64);v *= pc.fact(q) * pc.ifact(i) * pc.ifact(j) * pc.ifact(k);ans += v;}}println!("{}", ans);}}type M = ModInt<998_244_353>;#[derive(Clone)]pub struct FloorSum<T, const A: usize, const B: usize> {x: [T; A],y: [T; B],sum: [[T; B]; A],id: bool,}impl<T, const A: usize, const B: usize> FloorSum<T, A, B>whereT: Ring + Copy,{fn dx() -> Self {let mut res = Self::id();let u = A.min(2);res.x[..u].fill(T::one());res.y[0] = T::one();res.sum[0][0] = T::one();res.id = false;res}fn dy() -> Self {let mut res = Self::id();let u = B.min(2);res.y[..u].fill(T::one());res.x[0] = T::one();res.id = false;res}fn flush(&self) -> [[T; B]; A] {let coef = FloorPow::<T, B>::precalc();let mut sum = self.sum;for s in sum.iter_mut() {let mut t = [T::zero(); B];for (t, c) in t.iter_mut().zip(coef.iter()) {for (s, c) in s.iter().zip(c.iter()) {*t = *t + *c * *s;}}*s = t;}let mut sum = transpose(sum);let coef = FloorPow::<T, A>::precalc();for s in sum.iter_mut() {let mut t = [T::zero(); A];for (t, c) in t.iter_mut().zip(coef.iter()) {for (s, c) in s.iter().zip(c.iter()) {*t = *t + *c * *s;}}*s = t;}transpose(sum)}}impl<T, const A: usize, const B: usize> Monoid for FloorSum<T, A, B>whereT: Ring + Copy,{fn id() -> Self {Self {x: [T::zero(); A],y: [T::zero(); B],sum: [[T::zero(); B]; A],id: true,}}fn merge(&self, rhs: &Self) -> Self {if self.id {return rhs.clone();}if rhs.id {return self.clone();}let mut res = Self::id();res.id = false;for (i, a) in self.x.iter().enumerate() {for (x, b) in res.x[i..].iter_mut().zip(rhs.x.iter()) {*x = *x + *a * *b;}}for (i, a) in self.y.iter().enumerate() {for (x, b) in res.y[i..].iter_mut().zip(rhs.y.iter()) {*x = *x + *a * *b;}}for (i, a) in self.x.iter().enumerate() {for (res, b) in res.sum[i..].iter_mut().zip(rhs.sum.iter()) {for (res, b) in res.iter_mut().zip(b.iter()) {*res = *res + *a * *b;}}}for res in res.sum.iter_mut() {let mut next = [T::zero(); B];for (j, b) in self.y.iter().enumerate() {for (next, res) in next[j..].iter_mut().zip(res.iter()) {*next = *next + *res * *b;}}*res = next;}for (res, a) in res.sum.iter_mut().zip(self.sum.iter()) {for (res, a) in res.iter_mut().zip(a.iter()) {*res = *res + *a;}}res}}pub trait Monoid: Clone {fn id() -> Self;fn merge(&self, rhs: &Self) -> Self;fn pow(&self, mut n: usize) -> Self {let mut t = Self::id();let mut r = self.clone();while n > 0 {if n & 1 == 1 {t = t.merge(&r);}r = r.merge(&r);n >>= 1;}t}}pub fn under_fold<T>(mut n: usize,mut m: usize,mut a: usize,mut b: usize,mut x: T,mut y: T,) -> TwhereT: Monoid,{let mut front = T::id();let mut tail = T::id();let mut c = (a * n + b) / m;loop {if a >= m {let q = a / m;a %= m;x = x.merge(&y.pow(q));c -= q * n;}if b >= m {let q = b / m;b %= m;front = front.merge(&y.pow(q));c -= q;}if c == 0 {break;}let need = (m * c - b + a - 1) / a;tail = y.merge(&x.pow(n - need)).merge(&tail);n = c - 1;c = need;b = m - b + a - 1;std::mem::swap(&mut a, &mut m);std::mem::swap(&mut x, &mut y);}front.merge(&x.pow(n)).merge(&tail)}#[derive(Clone)]pub struct FloorPow<T, const N: usize> {y: [T; N],s: [T; N],}impl<T, const N: usize> Monoid for FloorPow<T, N>whereT: Ring + Copy,{fn id() -> Self {let mut y = [T::zero(); N];y[0] = T::one();Self {y,s: [T::zero(); N],}}fn merge(&self, rhs: &Self) -> Self {let mut y = [T::zero(); N];for (i, a) in self.y.iter().enumerate() {for (y, b) in y[i..].iter_mut().zip(rhs.y.iter()) {*y = *y + *a * *b;}}let mut s = self.s;for (i, a) in self.y.iter().enumerate() {for (s, b) in s[i..].iter_mut().zip(rhs.s.iter()) {*s = *s + *a * *b;}}Self { y, s }}}impl<T, const N: usize> FloorPow<T, N>whereT: Ring + Copy,{pub fn dx() -> Self {let mut res = Self::id();res.s[0] = T::one();res}pub fn dy() -> Self {assert!(N >= 2);let mut res = Self::id();res.y[1] = T::one();res}pub fn flush(&self) -> [T; N] {let coef = Self::precalc();let mut res = [T::zero(); N];for (res, coef) in res.iter_mut().zip(coef.iter()) {for (s, c) in self.s.iter().zip(coef.iter()) {*res = *res + *c * *s;}}res}fn precalc() -> [[T; N]; N] {let mut binom = [[T::zero(); N]; N];binom[0][0] = T::one();for i in 1..N {binom[i][0] = T::one();for j in 1..(i + 1) {binom[i][j] = binom[i - 1][j - 1] + binom[i - 1][j];}}let mut pow = [[T::zero(); N]; N];let mut r = T::zero();for i in 1..N {r = r + T::one();pow[i][0] = T::one();for j in 1..N {pow[i][j] = pow[i][j - 1] * r;}}let mut coef = [[T::zero(); N]; N];for k in 1..N {for i in 1..(k + 1) {let mut c = T::zero();for j in 1..(i + 1) {let v = binom[i][j] * pow[j][k];if (i - j) % 2 == 0 {c = c + v;} else {c = c - v;}}coef[k][i] = c;}}coef[0][0] = T::one();coef}}pub fn transpose<T, const A: usize, const B: usize>(a: [[T; B]; A]) -> [[T; A]; B]whereT: Copy,{let mut res = [[a[0][0]; A]; B];for (i, a) in a.iter().enumerate() {for (res, a) in res.iter_mut().zip(a.iter()) {res[i] = *a;}}res}// ---------- begin input macro ----------// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8#[macro_export]macro_rules! input {(source = $s:expr, $($r:tt)*) => {let mut iter = $s.split_whitespace();input_inner!{iter, $($r)*}};($($r:tt)*) => {let s = {use std::io::Read;let mut s = String::new();std::io::stdin().read_to_string(&mut s).unwrap();s};let mut iter = s.split_whitespace();input_inner!{iter, $($r)*}};}#[macro_export]macro_rules! input_inner {($iter:expr) => {};($iter:expr, ) => {};($iter:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($iter, $t);input_inner!{$iter $($r)*}};}#[macro_export]macro_rules! read_value {($iter:expr, ( $($t:tt),* )) => {( $(read_value!($iter, $t)),* )};($iter:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()};($iter:expr, chars) => {read_value!($iter, String).chars().collect::<Vec<char>>()};($iter:expr, bytes) => {read_value!($iter, String).bytes().collect::<Vec<u8>>()};($iter:expr, usize1) => {read_value!($iter, usize) - 1};($iter:expr, $t:ty) => {$iter.next().unwrap().parse::<$t>().expect("Parse error")};}// ---------- end input macro ----------use std::ops::*;// ---------- begin trait ----------pub trait Zero: Sized + Add<Self, Output = Self> {fn zero() -> Self;fn is_zero(&self) -> bool;}pub trait One: Sized + Mul<Self, Output = Self> {fn one() -> Self;fn is_one(&self) -> bool;}pub trait SemiRing: Zero + One {}pub trait Ring: SemiRing + Sub<Output = Self> + Neg<Output = Self> {}pub trait Field: Ring + Div<Output = Self> {}impl<T> SemiRing for T where T: Zero + One {}impl<T> Ring for T where T: SemiRing + Sub<Output = Self> + Neg<Output = Self> {}impl<T> Field for T where T: Ring + Div<Output = Self> {}// ---------- end trait ----------// ---------- begin modint ----------pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {let mut t = 1;while n > 0 {if n & 1 == 1 {t = (t as u64 * r as u64 % m as u64) as u32;}r = (r as u64 * r as u64 % m as u64) as u32;n >>= 1;}t}pub const fn primitive_root(p: u32) -> u32 {let mut m = p - 1;let mut f = [1; 30];let mut k = 0;let mut d = 2;while d * d <= m {if m % d == 0 {f[k] = d;k += 1;}while m % d == 0 {m /= d;}d += 1;}if m > 1 {f[k] = m;k += 1;}let mut g = 1;while g < p {let mut ok = true;let mut i = 0;while i < k {ok &= pow_mod(g, (p - 1) / f[i], p) > 1;i += 1;}if ok {break;}g += 1;}g}pub const fn is_prime(n: u32) -> bool {if n <= 1 {return false;}let mut d = 2;while d * d <= n {if n % d == 0 {return false;}d += 1;}true}#[derive(Clone, Copy, PartialEq, Eq)]pub struct ModInt<const M: u32>(u32);impl<const M: u32> ModInt<{ M }> {const REM: u32 = {let mut t = 1u32;let mut s = !M + 1;let mut n = !0u32 >> 2;while n > 0 {if n & 1 == 1 {t = t.wrapping_mul(s);}s = s.wrapping_mul(s);n >>= 1;}t};const INI: u64 = ((1u128 << 64) % M as u128) as u64;const IS_PRIME: () = assert!(is_prime(M));const PRIMITIVE_ROOT: u32 = primitive_root(M);const ORDER: usize = 1 << (M - 1).trailing_zeros();const fn reduce(x: u64) -> u32 {let _ = Self::IS_PRIME;let b = (x as u32 * Self::REM) as u64;let t = x + b * M as u64;let mut c = (t >> 32) as u32;if c >= M {c -= M;}c as u32}const fn multiply(a: u32, b: u32) -> u32 {Self::reduce(a as u64 * b as u64)}pub const fn new(v: u32) -> Self {assert!(v < M);Self(Self::reduce(v as u64 * Self::INI))}pub const fn const_mul(&self, rhs: Self) -> Self {Self(Self::multiply(self.0, rhs.0))}pub const fn pow(&self, mut n: u64) -> Self {let mut t = Self::new(1);let mut r = *self;while n > 0 {if n & 1 == 1 {t = t.const_mul(r);}r = r.const_mul(r);n >>= 1;}t}pub const fn inv(&self) -> Self {assert!(self.0 != 0);self.pow(M as u64 - 2)}pub const fn get(&self) -> u32 {Self::reduce(self.0 as u64)}pub const fn zero() -> Self {Self::new(0)}pub const fn one() -> Self {Self::new(1)}}impl<const M: u32> Add for ModInt<{ M }> {type Output = Self;fn add(self, rhs: Self) -> Self::Output {let mut v = self.0 + rhs.0;if v >= M {v -= M;}Self(v)}}impl<const M: u32> Sub for ModInt<{ M }> {type Output = Self;fn sub(self, rhs: Self) -> Self::Output {let mut v = self.0 - rhs.0;if self.0 < rhs.0 {v += M;}Self(v)}}impl<const M: u32> Mul for ModInt<{ M }> {type Output = Self;fn mul(self, rhs: Self) -> Self::Output {self.const_mul(rhs)}}impl<const M: u32> Div for ModInt<{ M }> {type Output = Self;fn div(self, rhs: Self) -> Self::Output {self * rhs.inv()}}impl<const M: u32> AddAssign for ModInt<{ M }> {fn add_assign(&mut self, rhs: Self) {*self = *self + rhs;}}impl<const M: u32> SubAssign for ModInt<{ M }> {fn sub_assign(&mut self, rhs: Self) {*self = *self - rhs;}}impl<const M: u32> MulAssign for ModInt<{ M }> {fn mul_assign(&mut self, rhs: Self) {*self = *self * rhs;}}impl<const M: u32> DivAssign for ModInt<{ M }> {fn div_assign(&mut self, rhs: Self) {*self = *self / rhs;}}impl<const M: u32> Neg for ModInt<{ M }> {type Output = Self;fn neg(self) -> Self::Output {if self.0 == 0 {self} else {Self(M - self.0)}}}impl<const M: u32> std::fmt::Display for ModInt<{ M }> {fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {write!(f, "{}", self.get())}}impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {write!(f, "{}", self.get())}}impl<const M: u32> std::str::FromStr for ModInt<{ M }> {type Err = std::num::ParseIntError;fn from_str(s: &str) -> Result<Self, Self::Err> {let val = s.parse::<u32>()?;Ok(ModInt::new(val))}}impl<const M: u32> From<usize> for ModInt<{ M }> {fn from(val: usize) -> ModInt<{ M }> {ModInt::new((val % M as usize) as u32)}}impl<const M: u32> From<i64> for ModInt<{ M }> {fn from(val: i64) -> ModInt<{ M }> {ModInt::new((val % M as i64 + M as i64) as u32 % M)}}// ---------- end modint ----------// ---------- begin precalc ----------pub struct Precalc<const MOD: u32> {fact: Vec<ModInt<MOD>>,ifact: Vec<ModInt<MOD>>,inv: Vec<ModInt<MOD>>,}impl<const MOD: u32> Precalc<MOD> {pub fn new(size: usize) -> Self {let mut fact = vec![ModInt::one(); size + 1];let mut ifact = vec![ModInt::one(); size + 1];let mut inv = vec![ModInt::one(); size + 1];for i in 2..=size {fact[i] = fact[i - 1] * ModInt::from(i);}ifact[size] = fact[size].inv();for i in (2..=size).rev() {inv[i] = ifact[i] * fact[i - 1];ifact[i - 1] = ifact[i] * ModInt::from(i);}Self { fact, ifact, inv }}pub fn fact(&self, n: usize) -> ModInt<MOD> {self.fact[n]}pub fn ifact(&self, n: usize) -> ModInt<MOD> {self.ifact[n]}pub fn inv(&self, n: usize) -> ModInt<MOD> {assert!(0 < n);self.inv[n]}pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> {if k > n {return ModInt::zero();}self.fact[n] * self.ifact[n - k]}pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> {if n < k {return ModInt::zero();}self.fact[n] * self.ifact[k] * self.ifact[n - k]}}// ---------- end precalc ----------impl<const M: u32> Zero for ModInt<{ M }> {fn zero() -> Self {Self::zero()}fn is_zero(&self) -> bool {self.0 == 0}}impl<const M: u32> One for ModInt<{ M }> {fn one() -> Self {Self::one()}fn is_one(&self) -> bool {self.get() == 1}}