結果

問題 No.2991 Hypercubic Graph Flow
ユーザー xiaokai houxiaokai hou
提出日時 2024-12-25 21:59:05
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 98 ms / 2,000 ms
コード長 4,577 bytes
コンパイル時間 1,330 ms
コンパイル使用メモリ 121,860 KB
実行使用メモリ 8,448 KB
最終ジャッジ日時 2024-12-25 21:59:09
合計ジャッジ時間 3,482 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 11 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 98 ms
8,448 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 26 ms
5,888 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 4 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <sstream>
#include <iomanip>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <vector>
#include <queue> 
#include <unordered_set>
#include <unordered_map>
#include <bitset>
#include <ctime>
#include <assert.h>
#include <deque>
#include <list>
#include <stack>


using namespace std;

#define is_mul_overflow(a, b) \
    ((b != 0) && (a > LLONG_MAX / b || a < LLONG_MIN / b))
 
typedef pair<long long, int> pli;
typedef pair<int, long long> pil;
typedef pair<long long , long long> pll;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<int, pii> piii;
typedef pair<int, long long > pil;
typedef pair<long long, pii> plii;
typedef pair<double, int> pdi;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ull, ull> puu;
typedef long double ld;
const int N = 2000086, MOD = 998244353, INF = 0x3f3f3f3f, MID = 333;
const long double EPS = 1e-8;
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
// int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}, dy[8] = {0, 1, 1, 1, 0, -1, -1, -1};
// int dx[8] = {2, 1, -1, -2, -2, -1, 1, 2}, dy[8] = {1, 2, 2, 1, -1, -2, -2, -1};
int n, m, cnt;
int w[N];
vector<ll> num;
ll res;

ll lowbit(ll x) { return x & -x; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
inline double rand(double l, double r) { return (double)rand() / RAND_MAX * (r - l) + l; }
inline ll qmi(ll a, ll b, ll c) { ll res = 1; while (b) { if (b & 1) res = res * a % c; a = a * a % c; b >>= 1; } return res; }
inline ll qmi(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; }
inline double qmi(double a, ll b) { double res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; } 
// inline ll C(ll a, ll b) { if (a < b) return 0; if (b > a - b) b = a - b; ll res = 1; for (ll i = 1, j = a; i <= b; i++, j--) { res = res * (j % MOD) % MOD; res = res * qmi(i, MOD - 2, MOD) % MOD; } return res; }
inline ll C(ll a, ll b, int* c) { if (a < b) return 0; ll res = 1; for (ll j = a, i = 1; i < b + 1; i++, j--) res *= j; for (ll j = a, i = 1; i < b + 1; i++, j--) res /= i; return res; }
inline int find_(int x) { return lower_bound(num.begin(), num.end(), x) - num.begin(); }

int a[1086][1086];
int e[N], ne[N], h[N], idx;
inline void add(int a, int b) { e[idx] = b, ne[idx] = h[a], h[a] = idx++; }
bool st[N];

void dfs(int r) {
    for (int i = h[r]; ~i; i = ne[i]) {
        if (st[i]) continue;
        st[i ^ 1] = st[i] = 1;
        a[r][e[i]] = 1, a[e[i]][r] = -1;
        dfs(e[i]);
    }
}

void check() {
    for (int i = 0; i < n; i++) {
        int sum = 0;
        for (int j = 0; j < n; j++) {
            sum += a[i][j];
            assert(a[i][j] == -a[j][i]);
            if (lowbit(i ^ j) == (i ^ j) && (i ^ j)) assert(a[i][j]);
            else assert(a[i][j] == 0);
        }
        assert(sum == 0);
    }
}

int main() {
    cin >> n;
    memset(h, -1, sizeof(int) * 2048);
    if (n == 1) {
        puts("No");
        return 0;
    }

    int t = n;
    n = 1 << n;
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++) {
            if (lowbit(i ^ j) == (i ^ j)) a[i][j] = a[j][i] = 3;
            if (t & 1 && (i ^ j) == (1 << (t - 1))) continue;
            if (lowbit(i ^ j) == (i ^ j)) add(i, j), add(j, i);
        }
    puts("Yes");

    a[e[1]][e[0]] = 1, a[e[0]][e[1]] = -1, st[1] = st[0] = 1;
    dfs(e[0]);

    if (t & 1) {
        for (int i = 0; i < n / 2; i++) {
            int ft = i;
            bool flag = 0;
            for (int j = 0; j <= n / 2; j++) flag |= abs(a[i][j]) == 2, ft = abs(a[i][j]) == 2 ? j : ft;

            for (int j = i + 1; j < n; j++) {
                if (a[i][j] == 3) {
                    // assert(ft != i);
                    if (flag) a[i][j] = a[i][ft] == 2 ? -1 : 1, a[n - 1 - i][n - 1 - j] = -a[i][j];
                    else a[i][j] = -a[i][ft], a[n - 1 - i][n - 1 - j] = -a[i][j], a[i][ft] = a[i][ft] == 1 ? 2 : -2, a[ft][i] = -a[i][ft], a[n - 1 - ft][n - 1 - i] = -a[i][ft], a[n - 1 - i][n - 1 - ft] = -a[i][ft];
                    break;
                }
                ft = a[i][ft] ? ft : j;
            }
        }
        for (int i = 0; i < n / 2; i++)
            for (int j = 0; j < n / 2; j++)
                if (a[i][j])
                    a[n - 1 - i][n - 1 - j] = -a[i][j];
    }
    
    // check();

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) printf("%d ", a[i][j]);
        puts("");
    }
}
0