結果
問題 |
No.3006 ベイカーの問題
|
ユーザー |
👑 |
提出日時 | 2025-01-11 10:13:17 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 62 ms / 2,000 ms |
コード長 | 7,091 bytes |
コンパイル時間 | 600 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 61,440 KB |
最終ジャッジ日時 | 2025-01-11 10:13:21 |
合計ジャッジ時間 | 2,267 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 20 |
ソースコード
class ModB: B = 998244353 length_bound = 10**6 #User definition length_max = min( length_bound , B ) inverse=None factorial=None factorial_inverse=None def SetModulo(B): ModB.B = int(B) assert(ModB.B > 0) ModB.length_max = min( ModB.length_bound , ModB.B ) ModB.inverse = [None,1 if ModB.B>1 else 0] ModB.factorial = [1 if ModB.B>1 else 0] ModB.factorial_inverse = [1 if ModB.B>1 else 0] def __init__(self,val,valid = False): self.val = int(val) if not valid and not(0 <= self.val < ModB.B):self.val %= ModB.B def ref(n): return n if n.__class__ == __class__ else ModB(n,True) def get(n): return n.val if n.__class__ == __class__ else n def copy(self): return ModB(self.val,True) def __str__(self): return str(self.val) def __eq__(self,x): return x==self.val def __ne__(self,other): return not( self == other ) def __iadd__(self,x): self.val += ModB.ref(x).val if self.val >= ModB.B:self.val -= ModB.B return self def __add__(self,x): a = self.copy() a += x return a def __radd__(self,x): return ModB(x + self.val) def __neg__(self): return ModB(ModB.B - self.val if self.val else 0,True) def __isub__(self,x): self.val -= ModB.ref(x).val if self.val < 0:self.val += ModB.B return self def __sub__(self,x): a = self.copy() a -= x return a def __rsub__(self,x): return ModB(x - self.val) def __mul__(self,x): return ModB.get(x) * self def __rmul__(self,x): return ModB(self.val * x) def __pow__(self,n): #Supported only if n>=0. answer = ModB(1) power = self.copy() while n > 0: if n&1:answer *= power.val power *= power.val n >>= 1 return answer def __xor__(self,n): #Supported only if B is a prime and val!=0, or n>=0. return self ** ( ( n * (2 - ModB.B) )if n < 0 else n ) def Inverse(n): #Supported only if B is a prime. if n < ModB.length_max: while len(ModB.inverse) <= n:ModB.inverse+=[ModB.B - ModB.inverse[ModB.B % len(ModB.inverse)] * ( ModB.B // len(ModB.inverse) ) % ModB.B] return ModB(ModB.inverse[n],True) else:return ModB(n) ** ( ModB.B - 2 ) def __truediv__(self,x): return ModB.Inverse(x) * self def __rtruediv__(self,x): return x * ModB.Inverse(self.val) def Factorial(n): while len(ModB.factorial) <= n:ModB.factorial+=[ModB.factorial[-1] * len(ModB.factorial) % ModB.B] return ModB(ModB.factorial[n],True) def FactorialInverse(n): #Supported only if B is a prime. while len(ModB.factorial_inverse) <= n:ModB.factorial_inverse+=[ModB.factorial_inverse[-1] * ModB.Inverse( len(ModB.factorial_inverse) ).val % ModB.B] return ModB(ModB.factorial_inverse[n],True) def Combination(n,m): #Supported only if B is a prime. return ModB.Factorial(n) * (ModB.FactorialInverse(m).val * ModB.FactorialInverse(n-m).val)if 0<=m<=n else ModB(0,True) ModB.inverse = [None,1 if ModB.B>1 else 0] ModB.factorial = [1 if ModB.B>1 else 0] ModB.factorial_inverse = [1 if ModB.B>1 else 0] def copy(n):return n.copy()if hasattr(n,"copy")else n class TwoByTwoMatrix: zero=None one=None def __init__(self,M00,M01,M10,M11): self.M00 = copy(M00) self.M01 = copy(M01) self.M10 = copy(M10) self.M11 = copy(M11) def copy(self): return self.__class__(self.M00,self.M01,self.M10,self.M11) def __eq__(self,other): return self.M00 == other.M00 and self.M01 == other.M01 and self.M10 == other.M10 and self.M11 == other.M11 def __ne__(self,other): return not( self == other ) def __iadd__(self,other): self.M00 += other.M00 self.M01 += other.M01 self.M10 += other.M10 self.M11 += other.M11 return self def __add__(self,other): M = self.copy() M += other return M def __isub__(self,other): self.M00 -= other.M00 self.M01 -= other.M01 self.M10 -= other.M10 self.M11 -= other.M11 return self def __sub__(self,other): M = self.copy() M -= other return M def __neg__(self): return self.__class__(-self.M00,-self.M01,-self.M10,-self.M11) def __mul__(self,other): return self.__class__(self.M00 * other.M00 + self.M01 * other.M10,self.M00 * other.M01 + self.M01 * other.M11,self.M10 * other.M00 + self.M11 * other.M10,self.M10 * other.M01 + self.M11 * other.M11) def __imul__(self,other): self.M00 , self.M01 , self.M10 , self.M11 = self.M00 * other.M00 + self.M01 * other.M10 , self.M00 * other.M01 + self.M01 * other.M11 , self.M10 * other.M00 + self.M11 * other.M10 , self.M10 * other.M01 + self.M11 * other.M11 return self def ScalarMultiply(self,x): self.M00 *= x self.M01 *= x self.M10 *= x self.M11 *= x return self def det(self): return self.M00 * self.M11 - self.M01 * self.M10 def tr(self): return self.M00 + self.M11 def Adjugate(self): return self.__class__( self.M11 , - self.M01 , - self.M10 , self.M00 ) def Inverse(self): return self.Adjugate().ScalarMultiply( 1 / self.det() ) #d = self.det() #assert( d in [1,-1] ) #For the case of integer coefficients #return self.Adjugate().ScalarMultiply( d ) def __truediv__(self,other): return self * other.Inverse() def __itruediv__(self,other): self *= other.Inverse() return self def __pow__(self,n): #Supported only when n>=0 answer = self.__class__.one.copy() power = self.copy() while n > 0: if n&1:answer *= power power.Square() n >>= 1 return answer def __xor__(self,n): return self.Inverse()**(-n)if n < 0 else self ** n #private: def Square(self): self.M00 , self.M01 , self.M10 , self.M11 = self.M00 ** 2 + self.M01 * self.M10 , ( self.M00 + self.M11 ) * self.M01 , self.M10 * ( self.M00 + self.M11 ) , self.M10 * self.M01 + self.M11 ** 2 TwoByTwoMatrix.zero = TwoByTwoMatrix(0,0,0,0) #User's definition TwoByTwoMatrix.one = TwoByTwoMatrix(1,0,0,1) #User's definition class TwoByOneMatrix: zero=None def __init__(self,M0,M1): self.M0 = copy(M0) self.M1 = copy(M1) def copy(self): return self.__class__(self.M0,self.M1) def __eq__(self,other): return self.M0 == other.M0 and self.M1 == other.M1 def __ne__(self,other): return not( self == other ) def __iadd__(self,other): self.M0 += other.M0 self.M1 += other.M1 return self def __add__(self,other): M = self.copy() M += other return M def __isub__(self,other): self.M0 -= other.M0 self.M1 -= other.M1 return self def __sub__(self,other): M = self.copy() M -= other return M def __neg__(self): return self.__class__(-self.M0,-self.M1) def __rmul__(self,T): return self.copy().Act(T) def Act(self,T,n=1): if n==1:self.M0 , self.M1 = T.M00 * self.M0 + T.M01 * self.M1 , T.M10 * self.M0 + T.M11 * self.M1 elif n: if n>0:p = T.copy() else:n , p = -n , T.Inverse() while n: if n&1:self.M0 , self.M1 = p.M00 * self.M0 + p.M01 * self.M1 , p.M10 * self.M0 + p.M11 * self.M1 n >>= 1 p.Square() return self def ScalarMultiply(self,x): self.M0 *= x self.M1 *= x return self TwoByOneMatrix.zero = TwoByOneMatrix(0,0) #User's definition X,Y,N=map(int,input().split()) X,Y=ModB(X),ModB(Y) if[X,Y]==[1,0]:exit(print(ModB(N),0)) A=TwoByTwoMatrix(X,-5*Y,Y,X) E=TwoByTwoMatrix.one v=TwoByOneMatrix(X,Y) v.Act(((A^N)-E)/(A-E)) print(v.M0,v.M1)