結果
| 問題 |
No.3005 トレミーの問題
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-01-17 21:45:57 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,466 bytes |
| コンパイル時間 | 4,218 ms |
| コンパイル使用メモリ | 287,144 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2025-01-17 21:46:05 |
| 合計ジャッジ時間 | 4,444 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 WA * 1 |
| other | AC * 30 |
ソースコード
# include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
const double pi = acos(-1);
template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }
template<class T>constexpr T hinf() { return inf<T>() / 2; }
template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }
template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }
template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }
template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }
int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }
int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }
int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }
ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };
ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };
ll MOD(ll x, ll m){return (x%m+m)%m; }
ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }
template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;
# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()
# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())
# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)
# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)
# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)
# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)
# define len(x) ((ll)(x).size())
# define bit(n) (1LL << (n))
# define pb push_back
# define exists(c, e) ((c).find(e) != (c).end())
struct INIT{
INIT(){
std::ios::sync_with_stdio(false);
std::cin.tie(0);
cout << fixed << setprecision(20);
}
}INIT;
namespace mmrz {
void solve();
}
int main(){
mmrz::solve();
}
#define debug(...) (static_cast<void>(0))
using namespace mmrz;
using point = pair<ll, ll>;
unsigned long long iroot(unsigned long long n, int k=2){
constexpr unsigned long long LIM = -1;
if(n <= 1 || k == 1){
return n;
}
if(k >= 64){
return 1;
}
if(k == 2){
return sqrtl(n);
}
if(n == LIM)n--;
auto safe_mul = [&](unsigned long long &x, unsigned long long &y) -> void {
if(x <= LIM / y){
x *= y;
}else{
x = LIM;
}
};
auto power = [&](unsigned long long a, int b) -> unsigned long long {
unsigned long long ret = 1;
while(b){
if(b & 1)safe_mul(ret, a);
safe_mul(a, a);
b >>= 1;
}
return ret;
};
unsigned long long ret = (k == 3 ? cbrt(n)-1 : pow(n, nextafter(1.0/double(k), 0.0)));
while(power(ret+1, k) <= n)ret++;
return ret;
}
void SOLVE(){
vector<point> p(4);
for(auto &[x, y] : p)cin >> x >> y;
ranges::sort(p);
do{
auto d2 = [&](point l, point r) -> ll {
return (l.first-r.first)*(l.first-r.first) + (l.second-r.second)*(l.second-r.second);
};
auto A = p[0];
auto B = p[1];
auto C = p[2];
auto D = p[3];
ll L = d2(A, C)*d2(B, D);
ll R = d2(A, D)*d2(B, C) + d2(A, B)*d2(D, C);
ll R2 = d2(A, D)*d2(B, C)*d2(A, B)*d2(D, C);
debug(L, R, R2);
if(iroot(R2)*iroot(R2) != R2){
continue;
}
if(L == R+2LL*iroot(R2)){
cout << "YES" << endl;
return;
}
}while(next_permutation(all(p)));
cout << "NO" << endl;
}
void mmrz::solve(){
int t = 1;
//cin >> t;
while(t--)SOLVE();
}