結果
| 問題 |
No.3005 トレミーの問題
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-01-17 22:16:12 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,039 bytes |
| コンパイル時間 | 2,547 ms |
| コンパイル使用メモリ | 201,596 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2025-01-17 22:16:17 |
| 合計ジャッジ時間 | 3,433 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 14 WA * 16 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
struct frac{ //最終的に分子分母64bitに収まる計算のみ.
public:
long long n,d;
frac() : n(0),d(1){}
frac(long long v) : n(v),d(1) {}
frac(__int128_t a,__int128_t b,bool redu = true){
assert(b != 0);
if(redu) reduce(a,b);
n = a,d = b;
}
private:
__int128_t gcd(__int128_t a,__int128_t b){
if(a%b == 0) return b;
return gcd(b,a%b);
}
__int128_t gcd128(__int128_t a,__int128_t b){ //絶対値gcd128.
if(b == 0) return abs(a);
return gcd(abs(a),abs(b));
}
void reduce(__int128_t &a,__int128_t &b){ //約分.
if(b < 0) a = -a,b = -b;
__int128_t div = gcd128(a,b);
a /= div; b /= div;
}
public:
//計算量 O(logmax(d,b.d)).
friend frac operator+(const frac &b){return b;}
friend frac operator-(const frac &b){return frac(-b.n,b.d,false);}
friend frac operator+(const frac &a,const frac &b){
return frac((__int128_t)a.n*b.d+(__int128_t)b.n*a.d,(__int128_t)a.d*b.d);
}
friend frac operator-(const frac &a,const frac &b){
return frac((__int128_t)a.n*b.d-(__int128_t)b.n*a.d,(__int128_t)a.d*b.d);
}
friend frac operator*(const frac &a,const frac &b){
long long g1 = std::gcd(a.n,b.d),g2 = std::gcd(a.d,b.n);
return frac((a.n/g1)*(b.n/g2),(a.d/g2)*(b.d/g1),false);
}
friend frac operator/(const frac &a,const frac &b){
assert(b.n != 0);
long long g1 = std::gcd(a.n,b.n),g2 = std::gcd(a.d,b.d);
if(b.n < 0) return frac((-a.n/g1)*(b.d/g2),(a.d/g2)*(-b.n/g1));
else return frac((a.n/g1)*(b.d/g2),(a.d/g2)*(b.n/g1));
}
friend bool operator==(const frac &a,const frac &b){return a.n==b.n && a.d==b.d;}
friend bool operator!=(const frac &a,const frac &b){return a.n!=b.n || a.d!=b.d;}
friend bool operator>(const frac &a,const frac &b){return (__int128_t)a.n*b.d > (__int128_t)b.n*a.d;}
friend bool operator>=(const frac &a,const frac &b){return (__int128_t)a.n*b.d >= (__int128_t)b.n*a.d;}
friend bool operator<(const frac &a,const frac &b){return (__int128_t)a.n*b.d < (__int128_t)b.n*a.d;}
friend bool operator<=(const frac &a,const frac &b){return (__int128_t)a.n*b.d <= (__int128_t)b.n*a.d;}
frac &operator=(const frac &b) = default;
frac operator+=(const frac &b){return *this=*this+b;}
frac operator-=(const frac &b){return *this=*this-b;}
frac operator*=(const frac &b){return *this=*this*b;}
frac operator/=(const frac &b){return *this=*this/b;}
frac operator++(int){*this += frac(1); return *this;}
frac operator--(int){*this -= frac(1); return *this;}
double decimal(){return (n+0.0)/d;}
long double decimall(){return ((long double)n)/d;}
long long num(){return n;} long long den(){return d;}
long long floor(){return n<0?(n+1)/d-1:n/d;}
long long ceil(){return n>0?(n-1)/d+1:n/d;}
frac inv(){return frac(n>=0?d:-d,n>=0?n:-n,false);}
};
struct Point{
frac x,y;
Point() : x(0),y(0) {}
Point(long long a,long long b) : x(frac(a)),y(frac(b)) {}
Point(frac a,frac b) : x(a),y(b) {}
Point operator+(const Point &b){return Point(x+b.x,y+b.y);}
Point operator-(const Point &b){return Point(x-b.x,y-b.y);}
Point operator+=(const Point &b){return *this=*this+b;}
Point operator-=(const Point &b){return *this=*this-b;}
bool operator==(const Point &b){return x==b.x && y==b.y;}
bool operator!=(const Point &b){return x!=b.x || y!=b.y;}
friend frac dist(const Point &a,const Point &b){
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
};
long long INF = 8e18;
frac cross(Point &a,Point &b){return a.x*b.y-a.y*b.x;}
Point findInt/*ersecton*/(Point &a,Point &b,Point &c,Point &d){//線分abと線分cdの交点.
Point NG(INF,INF);
Point ba = b-a,dc = d-c,ca = c-a,ac = a-c;
frac div = cross(ba,dc);
if(div == 0) return NG;
frac s = cross(ca,dc)/div;
frac t = cross(ba,ac)/div;
if(s < 0 || s > 1 || t < 0 || t > 1) return NG;
if(s <= 0 || s >= 1 || t <= 0 || t >= 1) return NG; //端点NG.
return Point{a.x+s*ba.x,a.y+s*ba.y};
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
int N = 4;
vector<Point> P(4);
for(auto &p : P){
int x,y; cin >> x >> y;
p = {x,y};
}
bool yes = false;
Point c = findInt(P.at(0),P.at(1),P.at(2),P.at(3));
frac one = dist(c,P.at(0)),two = dist(c,P.at(1)),three = dist(c,P.at(2)),four = dist(c,P.at(3));
if(one*three == two*four) yes = true;
c = findInt(P.at(0),P.at(3),P.at(1),P.at(2));
one = dist(c,P.at(0)),two = dist(c,P.at(1)),three = dist(c,P.at(2)),four = dist(c,P.at(3));
if(one*two == three*four) yes = true;
c = findInt(P.at(0),P.at(2),P.at(1),P.at(3));
one = dist(c,P.at(0)),two = dist(c,P.at(1)),three = dist(c,P.at(2)),four = dist(c,P.at(3));
if(one*two == three*four) yes = true;
if(yes) cout << "YES\n";
else cout << "NO\n";
}