結果

問題 No.3006 ベイカーの問題
ユーザー dyktr_06
提出日時 2025-01-17 23:10:09
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 15,592 bytes
コンパイル時間 8,045 ms
コンパイル使用メモリ 255,812 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2025-01-17 23:10:26
合計ジャッジ時間 5,796 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#include <atcoder/all>
using namespace std;
using namespace atcoder;
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(n) for(int i = 0; i < (int)(n); ++i)
#define rep2(i, n) for(int i = 0; i < (int)(n); ++i)
#define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i)
#define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i)
#define ALL(a) (a).begin(), (a).end()
#define Sort(a) (sort((a).begin(), (a).end()))
#define RSort(a) (sort((a).rbegin(), (a).rend()))
#define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end()))
typedef long long int ll;
typedef unsigned long long ul;
typedef long double ld;
typedef vector<int> vi;
typedef vector<long long> vll;
typedef vector<char> vc;
typedef vector<string> vst;
typedef vector<double> vd;
typedef vector<long double> vld;
typedef pair<long long, long long> P;
template<class T> long long sum(const T &a){ return accumulate(a.begin(), a.end(), 0LL); }
template<class T> auto min(const T &a){ return *min_element(a.begin(), a.end()); }
template<class T> auto max(const T &a){ return *max_element(a.begin(), a.end()); }
const long long MINF = 0x7fffffffffff;
const long long INF = 0x1fffffffffffffff;
const long long MOD = 998244353;
const long double EPS = 1e-9;
const long double PI = acos(-1);
template<class T> inline bool chmax(T &a, T b) { if(a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T &a, T b) { if(a > b) { a = b; return 1; } return 0; }
template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return
    os; }
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v
    .size() ? " " : ""); } return os; }
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " ";
    } return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os << *itr
    << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int) st.size(); ++i){ os <<
    *itr << (i + 1 != (int) st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; }
template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; }
template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; }
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os
    << pq.top() << " "; pq.pop(); } return os; }
template <typename T>
long long binary_search(long long ok, long long ng, T check){
while(abs(ok - ng) > 1){
long long mid = (ok + ng) / 2;
if(check(mid)) ok = mid;
else ng = mid;
}
return ok;
}
template <typename T>
long double binary_search_real(long double ok, long double ng, T check, int iter = 100){
for(int i = 0; i < iter; ++i){
long double mid = (ok + ng) / 2;
if(check(mid)) ok = mid;
else ng = mid;
}
return ok;
}
template <typename T>
long long trisum(T a, T b){
long long res = ((b - a + 1) * (a + b)) / 2;
return res;
}
template <typename T>
T intpow(T x, int n){
T ret = 1;
while(n > 0) {
if(n & 1) (ret *= x);
(x *= x);
n >>= 1;
}
return ret;
}
template <typename T>
T getReminder(T a, T b){
if(b == 0) return -1;
if(a >= 0 && b > 0){
return a % b;
} else if(a < 0 && b > 0){
return ((a % b) + b) % b;
} else if(a >= 0 && b < 0){
return a % b;
} else{
return (abs(b) - abs(a % b)) % b;
}
}
template<class T, class U> inline T vin(T &vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; }
template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; }
template<class... T> void in(T&... a){ (cin >> ... >> a); }
void out(){ cout << '\n'; }
template<class T, class... Ts> void out(const T &a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
template<class T, class U> void inGraph(vector<vector<T>> &G, U n, U m, bool directed = false){ G.resize(n); for(int i = 0; i < m; ++i){ int a, b;
    cin >> a >> b; a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } }
template <long long Modulus>
struct ModInt{
long long val;
static constexpr int mod() { return Modulus; }
constexpr ModInt(const long long _val = 0) noexcept : val(_val) {
normalize();
}
void normalize(){
val = (val % Modulus + Modulus) % Modulus;
}
inline ModInt &operator+=(const ModInt &rhs) noexcept {
if(val += rhs.val, val >= Modulus) val -= Modulus;
return *this;
}
inline ModInt &operator-=(const ModInt &rhs) noexcept {
if(val -= rhs.val, val < 0) val += Modulus;
return *this;
}
inline ModInt &operator*=(const ModInt &rhs) noexcept {
val = val * rhs.val % Modulus;
return *this;
}
inline ModInt &operator/=(const ModInt &rhs) noexcept {
val = val * inv(rhs.val).val % Modulus;
return *this;
}
inline ModInt &operator++() noexcept {
if(++val >= Modulus) val -= Modulus;
return *this;
}
inline ModInt operator++(int) noexcept {
ModInt t = val;
if(++val >= Modulus) val -= Modulus;
return t;
}
inline ModInt &operator--() noexcept {
if(--val < 0) val += Modulus;
return *this;
}
inline ModInt operator--(int) noexcept {
ModInt t = val;
if(--val < 0) val += Modulus;
return t;
}
inline ModInt operator-() const noexcept { return (Modulus - val) % Modulus; }
inline ModInt inv(void) const { return inv(val); }
ModInt pow(long long n){
assert(0 <= n);
ModInt x = *this, r = 1;
while(n){
if(n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
ModInt inv(const long long n) const {
long long a = n, b = Modulus, u = 1, v = 0;
while(b){
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
u %= Modulus;
if(u < 0) u += Modulus;
return u;
}
friend inline ModInt operator+(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) += rhs; }
friend inline ModInt operator-(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) -= rhs; }
friend inline ModInt operator*(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) *= rhs; }
friend inline ModInt operator/(const ModInt &lhs, const ModInt &rhs) noexcept { return ModInt(lhs) /= rhs; }
friend inline bool operator==(const ModInt &lhs, const ModInt &rhs) noexcept { return lhs.val == rhs.val; }
friend inline bool operator!=(const ModInt &lhs, const ModInt &rhs) noexcept { return lhs.val != rhs.val; }
friend inline istream &operator>>(istream &is, ModInt &x) noexcept {
is >> x.val;
x.normalize();
return is;
}
friend inline ostream &operator<<(ostream &os, const ModInt &x) noexcept { return os << x.val; }
};
template <typename T>
struct Matrix{
int n, m;
vector<T> val;
Matrix(int _n, int _m) : n(_n), m(_m), val(_n *_m){}
Matrix(const vector<vector<T>> &mat){
n = mat.size();
m = mat[0].size();
val.resize(n * m);
for(int i = 0; i < n; ++i){
for(int j = 0; j < m; ++j){
val[i * m + j] = mat[i][j];
}
}
}
static Matrix e(int _n){
Matrix res(_n, _n);
for(int i = 0; i < _n; ++i){
res[i][i] = T{1};
}
return res;
}
auto operator[](int i){ return val.begin() + i * m; }
auto operator[](int i) const { return val.begin() + i * m; }
inline Matrix &operator+=(const Matrix &rhs){
for(int i = 0; i < n * m; ++i){
val[i] += rhs[i];
}
return *this;
}
inline Matrix &operator-=(const Matrix &rhs){
for(int i = 0; i < n * m; ++i){
val[i] -= rhs[i];
}
return *this;
}
inline Matrix operator*(const Matrix &rhs){
assert(m == rhs.n);
const int l = rhs.m;
Matrix res(n, l);
for(int i = 0; i < n; ++i){
for(int j = 0; j < m; ++j){
for(int k = 0; k < l; ++k){
res[i][k] += val[i * m + j] * rhs[j][k];
}
}
}
return res;
}
inline Matrix &operator*=(const Matrix &rhs){
return *this = *this * rhs;
}
friend inline Matrix operator+(const Matrix &lhs, const Matrix &rhs) noexcept { return Matrix(lhs) += rhs; }
friend inline Matrix operator-(const Matrix &lhs, const Matrix &rhs) noexcept { return Matrix(lhs) -= rhs; }
friend inline bool operator==(const Matrix &lhs, const Matrix &rhs) noexcept { return lhs.val == rhs.val; }
friend inline bool operator!=(const Matrix &lhs, const Matrix &rhs) noexcept { return lhs.val != rhs.val; }
friend inline ostream &operator<<(ostream &os, const Matrix &mat) noexcept {
const int _n = mat.n;
const int _m = mat.m;
for(int i = 0; i < _n; ++i){
for(int j = 0; j < _m; ++j){
os << mat[i][j] << " \n"[j == _m - 1];
}
}
return os;
}
Matrix inv() const {
Matrix a = *this, b = e(n);
for(int i = 0; i < n; ++i){
if(a[i][i] == 0){
for(int j = i + 1; j < n; ++j){
if(a[j][i] != 0){
for(int k = i; k < n; ++k) swap(a[i][k], a[j][k]);
for(int k = 0; k < n; ++k) swap(b[i][k], b[j][k]);
break;
}
}
}
if(a[i][i] == 0) throw "Inverse does not exist.";
const T x = T{1} / a[i][i];
for(int k = i; k < n; ++k) a[i][k] *= x;
for(int k = 0; k < n; ++k) b[i][k] *= x;
for(int j = 0; j < n; ++j){
if(i != j){
const T x = a[j][i];
for(int k = i; k < n; ++k) a[j][k] -= a[i][k] * x;
for(int k = 0; k < n; ++k) b[j][k] -= b[i][k] * x;
}
}
}
return b;
}
Matrix pow(long long r) const {
if(r == 0) return e(n);
if(r < 0) return inv().pow(-r);
Matrix res = e(n), a = *this;
while(r > 0){
if(r & 1) res *= a;
a *= a;
r >>= 1;
}
return res;
}
Matrix pow2(string &r) const {
if(r == "0") return e(n);
Matrix res = e(n), a = *this;
int siz = r.size();
for(int i = siz - 1; i >= 0; i--){
if(r[i] == '1') res *= a;
a *= a;
}
return res;
}
T det() const {
Matrix a = *this;
T res = 1;
for(int i = 0; i < n; ++i){
if(a[i][i] == 0){
for(int j = i + 1; j < n; ++j){
if(a[j][i] != 0){
for(int k = i; k < n; ++k){
swap(a[i][k], a[j][k]);
}
res = -res;
break;
}
}
}
if(a[i][i] == 0) return 0;
res *= a[i][i];
const T x = T{1} / a[i][i];
for(int k = i; k < n; ++k){
a[i][k] *= x;
}
for(int j = i + 1; j < n; ++j){
const T x = a[j][i];
for(int k = i; k < n; ++k){
a[j][k] -= a[i][k] * x;
}
}
}
return res;
}
Matrix transpose() const {
Matrix res(m, n), a = *this;
for(int i = 0; i < n; ++i){
for(int j = 0; j < m; ++j){
res[j][i] = a[i][j];
}
}
return res;
}
Matrix gauss() const {
Matrix a = *this;
int r = 0;
for(int i = 0; i < m; ++i){
int pivot = -1;
for(int j = r; j < n; ++j){
if(a[j][i] != 0){
pivot = j;
break;
}
}
if(pivot == -1) continue;
for(int j = 0; j < m; ++j){
swap(a[pivot][j], a[r][j]);
}
const T s = a[r][i];
for(int j = i; j < m; ++j){
a[r][j] /= s;
}
for(int j = 0; j < n; ++j){
if(j == r) continue;
const T s = a[j][i];
if(s == 0) continue;
for(int k = i; k < m; ++k){
a[j][k] -= a[r][k] * s;
}
}
++r;
}
return a;
}
int rank(bool is_gaussed = false) const {
Matrix a = *this;
if(!is_gaussed){
return (n >= m ? a : a.transpose()).gauss().rank(true);
}
int r = 0;
for(int i = 0; i < n; ++i){
while(r < m && a[i][r] == 0) ++r;
if(r == m){
return i;
}
++r;
}
return n;
}
// Rotate 90 degrees clockwise
Matrix rotate() const {
Matrix res(m, n), a = *this;
for(int i = 0; i < m; ++i){
for(int j = 0; j < n; ++j){
res[i][j] = a[n - j - 1][i];
}
}
return res;
}
};
using mint = ModInt<MOD>;
ll T;
void input(){
in(T);
}
void solve(){
mint x_1, y_1;
ll n; in(x_1, y_1, n);
// x, y, sx, sy
// dp[0][0] = x_1;
// dp[0][1] = y_1;
// rep(i, n){
// dp[i + 1][0] += x_1 * dp[i][0];
// dp[i + 1][0] -= y_1 * 5 * dp[i][1];
// dp[i + 1][1] += y_1 * dp[i][0];
// dp[i + 1][1] += x_1 * dp[i][1];
// dp[i + 1][2] += dp[i][0];
// dp[i + 1][2] += dp[i][2];
// dp[i + 1][3] += dp[i][1];
// dp[i + 1][3] += dp[i][3];
// }
// out(dp[n][2], dp[n][3]);
Matrix<mint> dp(4, 4), mat(1, 4);
{
dp[0][0] += x_1;
dp[1][0] -= y_1 * 5;
dp[0][1] += y_1;
dp[1][1] += x_1;
dp[0][2] += 1;
dp[2][2] += 1;
dp[1][3] += 1;
dp[3][3] += 1;
}
mat[0][0] = x_1;
mat[0][1] = y_1;
dp = dp.pow(n);
mat *= dp;
out(mat[0][2], mat[0][3]);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(20);
T = 1;
// input();
while(T--) solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0