結果

問題 No.3008 ワンオペ警備員
ユーザー ecotteaecottea
提出日時 2025-01-18 01:21:05
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 14 ms / 2,000 ms
コード長 13,095 bytes
コンパイル時間 4,290 ms
コンパイル使用メモリ 253,632 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2025-01-18 01:21:21
合計ジャッジ時間 5,786 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 6
other AC * 37
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9e18int -2^31 2^31 = 2e9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // mod
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<1000000007>;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(...)
#define dump_math(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE MLE
#endif
//
/*
*
*
* Point<T>() : O(1)
* (0, 0)
*
* Point<T>(T x, T y) : O(1)
* (x, y)
*
* p1 == p2, p1 != p2, p1 < p2, p1 > p2, p1 <= p2, p1 >= p2 : O(1)
* x y
*
* p1 + p2, p1 - p2, c * p, p * c, p / c : O(1)
* 使
*
* T sqnorm() : O(1)
* 2
*
* double norm() : O(1)
*
*
* Point<double> normalize() : O(1)
*
*
* T dot(Point<T> p) : O(1)
* p
*
* T cross(Point<T> p) : O(1)
* p
*
* double angle(Point<T> p) : O(1)
* p
*/
template <class T>
struct Point {
// x y
T x, y;
//
Point() : x(0), y(0) {}
Point(T x_, T y_) : x(x_), y(y_) {}
//
Point(const Point& old) = default;
Point& operator=(const Point& other) = default;
//
operator Point<ll>() const { return Point<ll>((ll)x, (ll)y); }
operator Point<double>() const { return Point<double>((double)x, (double)y); }
//
friend istream& operator>>(istream& is, Point& p) { is >> p.x >> p.y; return is; }
friend ostream& operator<<(ostream& os, const Point& p) { os << '(' << p.x << ',' << p.y << ')'; return os; }
// x
bool operator==(const Point& p) const { return x == p.x && y == p.y; }
bool operator!=(const Point& p) const { return !(*this == p); }
bool operator<(const Point& p) const { return x == p.x ? y < p.y : x < p.x; }
bool operator>=(const Point& p) const { return !(*this < p); }
bool operator>(const Point& p) const { return x == p.x ? y > p.y : x > p.x; }
bool operator<=(const Point& p) const { return !(*this > p); }
//
Point& operator+=(const Point& p) { x += p.x; y += p.y; return *this; }
Point operator+(const Point& p) const { Point q(*this); return q += p; }
Point& operator-=(const Point& p) { x -= p.x; y -= p.y; return *this; }
Point operator-(const Point& p) const { Point q(*this); return q -= p; }
Point& operator*=(const T& c) { x *= c; y *= c; return *this; }
Point operator*(const T& c) const { Point q(*this); return q *= c; }
Point& operator/=(const T& c) { x /= c; y /= c; return *this; }
Point operator/(const T& c) const { Point q(*this); return q /= c; }
friend Point operator*(const T& sc, const Point& p) { return p * sc; }
Point operator-() const { Point a = *this; return a *= -1; }
//
T sqnorm() const { return x * x + y * y; }
double norm() const { return sqrt((double)x * x + (double)y * y); }
Point<double> normalize() const { return Point<double>(*this) / norm(); }
//
T dot(const Point& other) const { return x * other.x + y * other.y; }
T cross(const Point& other) const { return x * other.y - y * other.x; }
double angle(const Point& other) const {
return atan2(this->cross(other), this->dot(other));
}
};
//
/*
* {a, b} : 2 a, b a → b
*
*
*/
template <class T>
using Line = pair<Point<T>, Point<T>>;
//
/*
* Polygon(p[0..n)) : n
*/
template <class T>
using Polygon = vector<Point<T>>;
//O(1)
/*
* p s = a → b
*
*
* 1 : p s a → b → p
* -1 : p s a → b → p
* 2 : p s b a < b < p
* -2 : p s a p < a < b
* 0 : p s a ≦ p ≦ b
*/
template <typename T>
inline int ccw(const Point<T>& p, const Line<T>& s) {
// verify : https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_1_C
auto op = (s.second - s.first).cross(p - s.first);
if (op > T(0)) {
// p s
return 1;
}
else if (op < T(0)) {
// p s
return -1;
}
else {
if ((s.first - s.second).dot(p - s.second) < T(0)) {
// p s
return 2;
}
else if ((s.second - s.first).dot(p - s.first) < T(0)) {
// p s
return -2;
}
else {
// p s
return 0;
}
}
}
//O(1)
/*
* s1 s2 true false
*
*
*/
template <typename T>
inline bool intersectQ_CS_OS(const Line<T>& s1, const Line<T>& s2) {
//
// ⇔ (s1 s2 s2 s1 )
// (s1 s2 ) (s2 s1 )
auto [a, b] = s1;
auto [c, d] = s2;
if (ccw(a, s2) * ccw(b, s2) == -4 && ccw(c, s1) * ccw(d, s1) == -4) return true;
if (ccw(a, s2) * ccw(b, s2) == 0) return true;
if (ccw(c, s1) == 0 && ccw(d, s1) == 0) return true;
return false;
}
//O(1)
/*
* s1 s2 true false
*
*
*/
template <typename T>
inline bool intersectQ_CS_CS(const Line<T>& s1, const Line<T>& s2) {
// verify : https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_2_B
//
// ⇔ (s1 s2 s2 s1 )
// (s1 s2 ) (s2 s1 )
//
// ccw()
// ccw() = 0
return ccw(s2.first, s1) * ccw(s2.second, s1) <= 0 &&
ccw(s1.first, s2) * ccw(s1.second, s2) <= 0;
}
//O(n)
/*
* n poly 2
*
* n
*
*/
template <class T>
T doubled_area_polygon(const Polygon<T>& poly) {
// verify : https://onlinejudge.u-aizu.ac.jp/courses/library/4/CGL/all/CGL_3_A
int n = sz(poly);
T res = 0;
rep(i, n) res += poly[i].cross(poly[(i + 1) % n]);
// 2
return res;
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n;
cin >> n;
vector<Point<ll>> p(n);
cin >> p;
// 6
rep(i, n) repi(j, i + 2, n - 1) {
if (i == 0 && j == n - 1) continue;
if (intersectQ_CS_CS<ll>({ p[i], p[(i + 1) % n] }, { p[j], p[(j + 1) % n] })) {
EXIT(0);
}
}
//
rep(i, n) {
if (ccw(p[i], { p[(i + 1) % n], p[(i + 2) % n] }) % 2 == 0) {
EXIT(0);
}
}
//
if (doubled_area_polygon(p) < 0) {
reverse(all(p));
}
//
rep(i, n) {
bool ok = true;
rep(j, n) {
if ((p[(i + j) % n] - p[i]).cross(p[(i + j + 1) % n] - p[i]) < 0) {
ok = false;
}
}
if (ok) EXIT(1);
}
EXIT(-1);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0