結果

問題 No.1266 7 Colors
ユーザー ntuda
提出日時 2025-01-18 16:14:23
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,223 ms / 3,000 ms
コード長 2,747 bytes
コンパイル時間 299 ms
コンパイル使用メモリ 82,540 KB
実行使用メモリ 126,572 KB
最終ジャッジ日時 2025-01-18 16:14:45
合計ジャッジ時間 19,863 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 19
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import typing
class DSU:
'''
Implement (union by size) + (path halving)
Reference:
Zvi Galil and Giuseppe F. Italiano,
Data structures and algorithms for disjoint set union problems
'''
def __init__(self, n: int = 0) -> None:
self._n = n
self.parent_or_size = [-1] * n
def merge(self, a: int, b: int) -> int:
assert 0 <= a < self._n
assert 0 <= b < self._n
x = self.leader(a)
y = self.leader(b)
if x == y:
return x
if -self.parent_or_size[x] < -self.parent_or_size[y]:
x, y = y, x
self.parent_or_size[x] += self.parent_or_size[y]
self.parent_or_size[y] = x
return x
def same(self, a: int, b: int) -> bool:
assert 0 <= a < self._n
assert 0 <= b < self._n
return self.leader(a) == self.leader(b)
def leader(self, a: int) -> int:
assert 0 <= a < self._n
parent = self.parent_or_size[a]
while parent >= 0:
if self.parent_or_size[parent] < 0:
return parent
self.parent_or_size[a], a, parent = (
self.parent_or_size[parent],
self.parent_or_size[parent],
self.parent_or_size[self.parent_or_size[parent]]
)
return a
def size(self, a: int) -> int:
assert 0 <= a < self._n
return -self.parent_or_size[self.leader(a)]
def groups(self) -> typing.List[typing.List[int]]:
leader_buf = [self.leader(i) for i in range(self._n)]
result: typing.List[typing.List[int]] = [[] for _ in range(self._n)]
for i in range(self._n):
result[leader_buf[i]].append(i)
return list(filter(lambda r: r, result))
N, M, Q = map(int, input().split())
S = [list(map(int, list(input()))) for _ in range(N)]
UV = [list(map(int, input().split())) for _ in range(M)]
dsu = DSU(N * 8)
for i, s in enumerate(S):
for j in range(7):
if S[i][j] == 1 and S[i][(j + 1) % 7] == 1:
dsu.merge(8 * i + j, 8 * i + (j + 1) % 7)
E = [[] for _ in range(N)]
for u, v in UV:
u -= 1
v -= 1
E[u].append(v)
E[v].append(u)
for i in range(7):
if S[u][i] == 1 and S[v][i] == 1:
dsu.merge(8 * u + i, 8 * v + i)
for _ in range(Q):
t, x, y = map(int, input().split())
x -= 1
if t == 2:
print(dsu.size(8 * x))
else:
y -= 1
S[x][y] = 1
if S[x][(y - 1) % 7] == 1:
dsu.merge(8 * x + y, 8 * x + (y - 1) % 7)
if S[x][(y + 1) % 7] == 1:
dsu.merge(8 * x + y, 8 * x + (y + 1) % 7)
for z in E[x]:
if S[z][y] == 1:
dsu.merge(8 * z + y, 8 * x + y)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0