結果
問題 |
No.1435 Mmm......
|
ユーザー |
![]() |
提出日時 | 2025-01-23 04:46:39 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 227 ms / 2,000 ms |
コード長 | 6,770 bytes |
コンパイル時間 | 1,345 ms |
コンパイル使用メモリ | 124,116 KB |
実行使用メモリ | 17,272 KB |
最終ジャッジ日時 | 2025-01-23 04:46:46 |
合計ジャッジ時間 | 5,982 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 24 |
ソースコード
#define PROBLEM "https://yukicoder.me/problems/no/1435" #include <algorithm> #include <iostream> #include <ranges> #include <vector> #include <iostream> #include <utility> #include <vector> #include <deque> namespace mtd { template <class S, S element, class op > requires std::is_invocable_r_v<S, op, S, S> struct Monoid { using value_type = S; constexpr static S _element = element; using op_type = op; S m_val; constexpr Monoid(S val) : m_val(val) {} constexpr Monoid() : Monoid(element) {} constexpr Monoid binaryOperation(const Monoid& m2) const { return op()(m_val, m2.m_val); } friend std::ostream& operator<<(std::ostream& os, const Monoid<S, element, op>& m) { return os << m.m_val; } }; namespace __detail { template <typename T, template <typename, auto, typename> typename S> concept is_monoid_specialization_of = requires { typename std::enable_if_t<std::is_same_v< T, S<typename T::value_type, T::_element, typename T::op_type>>>; }; } template <typename M> concept monoid = __detail::is_monoid_specialization_of<M, Monoid>;} namespace mtd { template <monoid Monoid> class SegmentTree { private: const int m_size; std::vector<Monoid> m_node; using S = decltype(Monoid().m_val); constexpr int calcSize(int n) const { int size = 1; while (size < n) { size <<= 1; } return size; } template <class Lambda> constexpr auto _update_op(int itr, Monoid&& val, const Lambda& op) { int i = itr + m_size - 1; m_node[i] = op(m_node[i], std::forward<decltype(val)>(val)); while (i) { i = (i - 1) >> 1; m_node[i] = m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1]); } } constexpr auto _query(int _l, int _r) const { auto l = std::max(_l, 0) + m_size; auto r = std::min(_r, m_size - 1) + m_size; auto lm = Monoid(); auto rm = Monoid(); while (l <= r) { if (l & 1) { lm = lm.binaryOperation(m_node[l - 1]); ++l; } if (!(r & 1)) { rm = m_node[r - 1].binaryOperation(rm); --r; } l >>= 1, r >>= 1; } return lm.binaryOperation(rm); } constexpr auto _construct(const std::vector<S>& vec) { for (unsigned int i = 0; i < vec.size(); ++i) { m_node[i + m_size - 1] = Monoid(vec[i]); } for (int i = m_size - 2; i >= 0; --i) { m_node[i] = m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1]); } } public: SegmentTree(int n) : m_size(calcSize(n)), m_node((m_size << 1) - 1) {} SegmentTree(int n, const std::vector<S>& vec) : SegmentTree(n) { _construct(vec); } template <class Lambda> constexpr auto update_op(int itr, Monoid&& val, const Lambda& op) { return _update_op(itr, std::forward<Monoid>(val), op); } constexpr auto update(int itr, Monoid&& val) { return update_op(itr, std::forward<Monoid>(val), [](const Monoid&, const Monoid& m2) { return m2; }); } constexpr auto add(int itr, Monoid&& val) { return update_op(itr, std::forward<Monoid>(val), [](const Monoid& m1, const Monoid& m2) { return Monoid(m1.m_val + m2.m_val); }); } constexpr auto query(int l, int r) const { return _query(l, r).m_val; } constexpr auto query_all() const { return m_node[0].m_val; } /* * f([l, r]) = true となる最大のr * judge: (Monoid) -> bool **/ template <class F> constexpr auto max_right(int _l, const F& judge) const { if (!judge(Monoid())) { throw std::runtime_error("SegmentTree.max_right.judge(e) must be true"); } auto l = std::max(_l, 0) + m_size; auto r = 2 * m_size - 1; auto lm = Monoid(); while (l <= r) { if (l & 1) { auto next = lm.binaryOperation(m_node[l - 1]); if (!judge(next)) { auto itr = l; while (itr < m_size) { auto litr = 2 * itr; auto ritr = 2 * itr + 1; auto lval = lm.binaryOperation(m_node[litr - 1]); if (!judge(lval)) { itr = litr; } else { itr = ritr; std::swap(lm, lval); } } return itr - m_size - 1; } std::swap(lm, next); ++l; } l >>= 1, r >>= 1; } return m_size - 1; } /* * f([l, r]) = true となる最小のl * judge: (Monoid) -> bool **/ template <class F> constexpr auto min_left(int _r, const F& judge) const { if (!judge(Monoid())) { throw std::runtime_error("SegmentTree.min_left.judge(e) must be true"); } auto l = m_size; auto r = std::min(_r, m_size - 1) + m_size; auto rm = Monoid(); while (l <= r) { if (l & 1) { ++l; } if (!(r & 1) || (_r == m_size - 1 && r == 1)) { auto next = m_node[r - 1].binaryOperation(rm); if (!judge(next)) { auto itr = r; while (itr < m_size) { auto litr = 2 * itr; auto ritr = 2 * itr + 1; auto rval = m_node[ritr - 1].binaryOperation(rm); if (!judge(rval)) { itr = ritr; } else { itr = litr; std::swap(rm, rval); } } return itr - m_size + 1; } std::swap(rm, next); --r; } l >>= 1, r >>= 1; } return 0; } constexpr auto debug() const { for (int i = 0; i < m_size; ++i) { std::cout << m_node[m_size + i - 1] << " "; } std::cout << std::endl; } };} using ll = long long; struct T { ll min1, min2, max; constexpr T(ll _min1, ll _min2, ll _max) : min1(_min1), min2(_min2), max(_max) {} }; auto op = [](const T& a, const T& b) { std::vector<ll> v{a.min1, a.min2, b.min1, b.min2}; std::ranges::sort(v); return T(v[0], v[1], std::max(a.max, b.max)); }; constexpr T e{1LL << 60, 1LL << 60, -(1LL << 60)}; using M = mtd::Monoid<T, e, decltype(op)>; signed main() { std::cin.tie(0); std::ios::sync_with_stdio(0); int n; std::cin >> n; std::vector<ll> a(n); for (auto i : std::views::iota(0, n)) { std::cin >> a[i]; } auto segtree = mtd::SegmentTree<M>(n); for (auto i : std::views::iota(0, n)) { segtree.update(i, T(a[i], 1LL << 60, a[i])); } ll ans = 0; for (auto r : std::views::iota(0, n)) { auto l = segtree.min_left(r, [](const M& m) { auto [min1, min2, max] = m.m_val; return max <= min1 + min2; }); ans += r - l; } std::cout << ans << std::endl; }