結果

問題 No.833 かっこいい電車
ユーザー cutmdo
提出日時 2025-01-23 16:34:08
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 300 ms / 2,000 ms
コード長 14,424 bytes
コンパイル時間 1,498 ms
コンパイル使用メモリ 126,444 KB
実行使用メモリ 14,976 KB
最終ジャッジ日時 2025-01-23 16:34:20
合計ジャッジ時間 6,822 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define PROBLEM "https://yukicoder.me/problems/no/833"
#include <iostream>
#include <numeric>
#include <ranges>
#include <vector>
#include <vector>
#include <utility>
#include <deque>
#include <iostream>
namespace mtd { template <class S, S element, class op > requires std::is_invocable_r_v<S, op, S, S>
    struct Monoid { using value_type = S; constexpr static S _element = element; using op_type = op; S m_val; constexpr Monoid(S val) :
    m_val(val) {} constexpr Monoid() : Monoid(element) {} constexpr Monoid binaryOperation(const Monoid& m2) const { return op()(m_val, m2
    .m_val); } friend std::ostream& operator<<(std::ostream& os, const Monoid<S, element, op>& m) {
    return os << m.m_val; } }; namespace __detail { template <typename T, template <typename, auto, typename> typename S> concept
    is_monoid_specialization_of = requires { typename std::enable_if_t<std::is_same_v< T, S<typename T::value_type, T::_element,
    typename T::op_type>>>; }; } template <typename M> concept monoid = __detail::is_monoid_specialization_of<M, Monoid>;}
namespace mtd { template <monoid Monoid, monoid MonoidOp, class op> class LazySegmentTree { private: const int m_size; std::vector<Monoid>
    m_node; std::vector<MonoidOp> m_lazy; using S = decltype(Monoid().m_val); constexpr int calcSize(int n) const { int size = 1;
    while (size < n) { size <<= 1; } return size; } constexpr auto _lazy_update(int i, const MonoidOp& val) { if (i >= (m_size << 1) -
    1) { return; } m_lazy[i] = m_lazy[i].binaryOperation(val); } constexpr auto _propagate(int i) { m_node[i] = op()(m_node[i],
    m_lazy[i]); _lazy_update((i << 1) + 1, m_lazy[i]); _lazy_update((i << 1) + 2, m_lazy[i]); m_lazy[i] = MonoidOp(); } constexpr
    auto _update(int l, int r, int k, int nl, int nr, const MonoidOp& m) { _propagate(k); if (nr < l || r < nl) {
    return; } if (l <= nl && nr <= r) { _lazy_update(k, m); _propagate(k); return; } _update(l, r, (k << 1) + 1,
    nl, (nl + nr) >> 1, m); _update(l, r, (k << 1) + 2, ((nl + nr) >> 1) + 1, nr, m); m_node[k] = m_node[(k << 1) + 1].binaryOperation
    (m_node[(k << 1) + 2]); } constexpr auto _query(int l, int r, int k, int nl, int nr) { _propagate(k); if (nr < l || r < nl) {
    return Monoid(); } if (l <= nl && nr <= r) { return m_node[k]; } auto l_val = _query(l, r, (k << 1) + 1, nl, (nl + nr) >> 1); auto
    r_val = _query(l, r, (k << 1) + 2, ((nl + nr) >> 1) + 1, nr); return l_val.binaryOperation(r_val); } constexpr auto _construct(const
    std::vector<S>& vec) { for (unsigned int i = 0; i < vec.size(); ++i) { m_node[i + m_size - 1] = Monoid(vec[i]); } for (int i
    = m_size - 2; i >= 0; --i) { m_node[i] = m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1LL]); } } public:
    constexpr LazySegmentTree(int n) : m_size(calcSize(n)), m_node((m_size << 1) - 1), m_lazy((m_size << 1) - 1) {}
    constexpr LazySegmentTree(int n, const std::vector<S>& vec) : LazySegmentTree(n) { _construct(vec); } constexpr auto update(int
    l, int r, const MonoidOp& val) { _update(l, r, 0, 0, m_size - 1, val); } constexpr auto query(int l, int r) { return _query(l, r,
    0, 0, m_size - 1).m_val; } /* * f([l, r]) = true r * judge: (Monoid) -> bool **/ template <class F> constexpr
    auto max_right(int _l, const F& judge) { if (!judge(Monoid())) { throw std::runtime_error("SegmentTree.max_right.judge(e) must be
    true"); } query(_l, m_size - 1); auto l = std::max(_l, 0) + m_size; auto r = 2 * m_size - 1; auto lm = Monoid();
    while (l <= r) { if (l & 1) { auto next = lm.binaryOperation(m_node[l - 1]); if (!judge(next)) { auto itr = l;
     while (itr < m_size) { _propagate(itr - 1); auto litr = 2 * itr; auto ritr = 2 * itr + 1;
     _propagate(litr - 1); auto lval = lm.binaryOperation(m_node[litr - 1]); if (!judge(lval)) { itr =
    litr; } else { itr = ritr; std::swap(lm, lval); } } return itr -
    m_size - 1; } std::swap(lm, next); ++l; } l >>= 1, r >>= 1; } return m_size - 1; } /*
     * f([l, r]) = true l * judge: (Monoid) -> bool **/ template <class F> constexpr auto min_left(int _r, const F& judge) {
     if (!judge(Monoid())) { throw std::runtime_error("SegmentTree.min_left.judge(e) must be true"); } query(0, _r); auto l
    = m_size; auto r = std::min(_r, m_size - 1) + m_size; auto rm = Monoid(); while (l <= r) { if (l & 1) { ++l; } if (!
    (r & 1) || (_r == m_size - 1 && r == 1)) { auto next = m_node[r - 1].binaryOperation(rm); if (!judge(next)) { auto
    itr = r; while (itr < m_size) { _propagate(itr); auto litr = 2 * itr; auto ritr = 2 * itr + 1;
     _propagate(ritr - 1); auto rval = m_node[ritr - 1].binaryOperation(rm); if (!judge(rval)) {
    itr = ritr; } else { itr = litr; std::swap(rm, rval); } } return itr
    - m_size + 1; } std::swap(rm, next); --r; } l >>= 1, r >>= 1; } return 0; } constexpr
    auto debug() { for (int i = 0; i < (m_size << 1) - 1; ++i) { _propagate(i); } for (int i = 0; i < m_size; ++i) { std::cout <<
    m_node[m_size + i - 1] << " "; } std::cout << std::endl; } }; namespace type { /* */ using P = std::pair
    <long long, long long>; constexpr long long update_element = -1e18; /*---- ----*/ using M_SUM = Monoid<P, P{0, 0}, decltype([](const
    P& a, const P& b) { return P{a.first + b.first, a.second + b.second}; })>; using M_MIN =
    Monoid<long long, static_cast<long long>(1e18), decltype([](long long a, long long b) { return
    std::min(a, b); })>; using M_MAX = Monoid<long long, static_cast<long long>(-1e18), decltype([]
    (long long a, long long b) { return std::max(a, b); })>; /*---- ----*/ using M_UP =
    Monoid<long long, update_element, decltype([](long long a, long long b) { if (b == update_element)
    { return a; } return b; })>; using M_ADD = Monoid<long long, static_cast<long long>(0),
     decltype([](long long a, long long b) { return a + b; })>; /*---- ----*/ using OP_SUM_UP = decltype([](const M_SUM& m,
    const M_UP& m2) { if (m2.m_val == update_element) { return m; } return M_SUM(P{m.m_val.second * m2.m_val, m.m_val.second}); });
    using OP_MIN_UP = decltype([](const M_MIN& m, const M_UP& m2) { if (m2.m_val == update_element) { return m; } return M_MIN(m2.m_val);
     }); using OP_MAX_UP = decltype([](const M_MAX& m, const M_UP& m2) { if (m2.m_val == update_element) { return m; } return M_MAX(m2
    .m_val); }); using OP_SUM_ADD = decltype([](const M_SUM& m, const M_ADD& m2) { return M_SUM( P{m.m_val.first + m.m_val.second
    * m2.m_val, m.m_val.second}); }); using OP_MIN_ADD = decltype([](const M_MIN& m, const M_ADD& m2) { return M_MIN{m.m_val + m2.m_val};
     }); using OP_MAX_ADD = decltype([](const M_MAX& m, const M_ADD& m2) { return M_MAX{m.m_val + m2.m_val}; }); } }
namespace mtd { template <monoid Monoid> class SegmentTree { private: const int m_size; std::vector<Monoid> m_node; using S = decltype
    (Monoid().m_val); constexpr int calcSize(int n) const { int size = 1; while (size < n) { size <<= 1; } return size; }
    template <class Lambda> constexpr auto _update_op(int itr, Monoid&& val, const Lambda& op) { int i = itr + m_size - 1; m_node[i] = op
    (m_node[i], std::forward<decltype(val)>(val)); while (i) { i = (i - 1) >> 1; m_node[i] = m_node[(i << 1) | 1].binaryOperation
    (m_node[(i + 1) << 1]); } } constexpr auto _query(int _l, int _r) const { auto l = std::max(_l, 0) + m_size; auto r = std
    ::min(_r, m_size - 1) + m_size; auto lm = Monoid(); auto rm = Monoid(); while (l <= r) { if (l & 1) { lm = lm
    .binaryOperation(m_node[l - 1]); ++l; } if (!(r & 1)) { rm = m_node[r - 1].binaryOperation(rm); --r;
     } l >>= 1, r >>= 1; } return lm.binaryOperation(rm); } constexpr auto _construct(const std::vector<S>& vec) { for
    (unsigned int i = 0; i < vec.size(); ++i) { m_node[i + m_size - 1] = Monoid(vec[i]); } for (int i = m_size - 2; i >= 0; --i) {
     m_node[i] = m_node[(i << 1) | 1].binaryOperation(m_node[(i + 1) << 1]); } } public: SegmentTree(int n) : m_size(calcSize(n)),
    m_node((m_size << 1) - 1) {} SegmentTree(int n, const std::vector<S>& vec) : SegmentTree(n) { _construct(vec); } template <class
    Lambda> constexpr auto update_op(int itr, Monoid&& val, const Lambda& op) { return _update_op(itr, std::forward<Monoid>(val), op); }
     constexpr auto update(int itr, Monoid&& val) { return update_op(itr, std::forward<Monoid>(val), [](const Monoid&,
    const Monoid& m2) { return m2; }); } constexpr auto add(int itr, Monoid&& val) { return update_op(itr, std::forward<Monoid>(val),
     [](const Monoid& m1, const Monoid& m2) { return Monoid(m1.m_val + m2.m_val); });
     } constexpr auto query(int l, int r) const { return _query(l, r).m_val; } constexpr auto query_all() const { return m_node[0].m_val; }
    /* * f([l, r]) = true r * judge: (Monoid) -> bool **/ template <class F> constexpr auto max_right(int _l, const F&
    judge) const { if (!judge(Monoid())) { throw std::runtime_error("SegmentTree.max_right.judge(e) must be true"); } auto l =
    std::max(_l, 0) + m_size; auto r = 2 * m_size - 1; auto lm = Monoid(); while (l <= r) { if (l & 1) { auto next = lm
    .binaryOperation(m_node[l - 1]); if (!judge(next)) { auto itr = l; while (itr < m_size) { auto litr =
    2 * itr; auto ritr = 2 * itr + 1; auto lval = lm.binaryOperation(m_node[litr - 1]); if (!judge(lval)) {
     itr = litr; } else { itr = ritr; std::swap(lm, lval); } }
     return itr - m_size - 1; } std::swap(lm, next); ++l; } l >>= 1, r >>= 1; } return m_size - 1;
     } /* * f([l, r]) = true l * judge: (Monoid) -> bool **/ template <class F> constexpr auto min_left(int _r,
    const F& judge) const { if (!judge(Monoid())) { throw std::runtime_error("SegmentTree.min_left.judge(e) must be true"); }
    auto l = m_size; auto r = std::min(_r, m_size - 1) + m_size; auto rm = Monoid(); while (l <= r) { if (l & 1) { ++l; }
     if (!(r & 1) || (_r == m_size - 1 && r == 1)) { auto next = m_node[r - 1].binaryOperation(rm); if (!judge(next)) {
    auto itr = r; while (itr < m_size) { auto litr = 2 * itr; auto ritr = 2 * itr + 1; auto rval =
    m_node[ritr - 1].binaryOperation(rm); if (!judge(rval)) { itr = ritr; } else { itr = litr;
     std::swap(rm, rval); } } return itr - m_size + 1; } std::swap(rm, next);
     --r; } l >>= 1, r >>= 1; } return 0; } constexpr auto debug() const { for (int i = 0; i < m_size; ++i) {
     std::cout << m_node[m_size + i - 1] << " "; } std::cout << std::endl; } };}
using ll = long long;
signed main() {
std::cin.tie(0);
std::ios::sync_with_stdio(0);
int n, q;
std::cin >> n >> q;
std::vector<ll> a(n);
for (auto i : std::views::iota(0, n)) { std::cin >> a[i]; }
std::vector<ll> v(n);
std::iota(v.begin(), v.end(), 0);
auto segtree1 = mtd::LazySegmentTree<mtd::type::M_MIN, mtd::type::M_UP,
mtd::type::OP_MIN_UP>(n, v);
auto segtree2 = mtd::LazySegmentTree<mtd::type::M_MAX, mtd::type::M_UP,
mtd::type::OP_MAX_UP>(n, v);
auto range = [&](int i) {
auto val = segtree1.query(i, i);
auto judge_l = [&](const mtd::type::M_MIN& m) { return m.m_val >= val; };
auto judge_r = [&](const mtd::type::M_MAX& m) { return m.m_val <= val; };
auto l = segtree1.min_left(i, judge_l);
auto r = segtree2.max_right(i, judge_r);
return std::make_tuple(l, r);
};
for (auto i : std::views::iota(0, n)) { range(i); }
auto op = [](ll a, ll b) { return a + b; };
using M = mtd::Monoid<ll, 0LL, decltype(op)>;
auto segtree3 = mtd::SegmentTree<M>(n, a);
for ([[maybe_unused]] auto _ : std::views::iota(0, q)) {
int t, x;
std::cin >> t >> x;
--x;
if (t == 1) {
auto val = segtree1.query(x, x);
auto [l, r] = range(x + 1);
segtree1.update(l, r, val);
segtree2.update(l, r, val);
} else if (t == 2) {
auto [l, r] = range(x + 1);
segtree1.update(x + 1, r, x + 1);
segtree2.update(x + 1, r, x + 1);
} else if (t == 3) {
segtree3.add(x, 1);
} else {
auto [l, r] = range(x);
std::cout << segtree3.query(l, r) << std::endl;
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0