結果
| 問題 |
No.931 Multiplicative Convolution
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-01-27 20:01:02 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 9,948 bytes |
| コンパイル時間 | 8,388 ms |
| コンパイル使用メモリ | 332,952 KB |
| 実行使用メモリ | 12,792 KB |
| 最終ジャッジ日時 | 2025-01-27 20:01:13 |
| 合計ジャッジ時間 | 10,035 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 4 WA * 10 |
ソースコード
#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
namespace my{
#define eb emplace_back
#define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__)
#define VL(n,...) vec<ll>__VA_ARGS__;setsize({n},__VA_ARGS__);lin(__VA_ARGS__)
#define FO(n) for(ll ij=n;ij-->0;)
#define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step)
#define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__))
#define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a)
#define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{
void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);}
using ll=long long;
using ull=unsigned long long;
using ulll=__uint128_t;
using lll=__int128_t;
istream&operator>>(istream&i,ulll&x){ull t;i>>t;x=t;return i;}
ostream&operator<<(ostream&o,const ulll&x){return(x<10?o:o<<x/10)<<ll(x%10);}
istream&operator>>(istream&i,lll&x){ll t;i>>t;x=t;return i;}
ostream&operator<<(ostream&o,const lll&x){return o<<string(x<0,'-')<<ulll(x>0?x:-x);}
constexpr auto range(bool s,auto...a){array<ll,3>r{0,0,1};ll I=0;((r[I++]=a),...);if(!s&&I==1)swap(r[0],r[1]);r[0]-=s;if(s)r[2]*=-1;return r;}
constexpr char newline=10;
constexpr char space=32;
constexpr auto abs(auto x){return x<0?-x:x;}
lll pow(lll x,ll n){assert(n>=0);lll r=1;while(n)n&1?r*=x:r,x*=x,n>>=1;return r;}
template<class T,class U>common_type_t<T,U>gcd(T a,U b){return b?gcd(b,a%b):abs(a);}
auto gcd(auto...a){common_type_t<decltype(a)...>r=0;((r=gcd(r,a)),...);return r;}
template<class A,class B>struct pair{
A a;B b;
pair()=default;
pair(A a,B b):a(a),b(b){}
pair(const std::pair<A,B>&p):a(p.first),b(p.second){}
auto operator<=>(const pair&)const=default;
pair operator+(const pair&p)const{return{a+p.a,b+p.b};}
friend istream&operator>>(istream&i,pair&p){return i>>p.a>>p.b;}
friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<space<<p.b;}
};
template<class F=less<>>auto&sort(auto&a,F f={}){ranges::sort(a,f);return a;}
template<ll k>auto pack_kth(const auto&...a){return get<k>(make_tuple(a...));}
template<class T,ll n>auto pack_slice(const auto&...a){return[&]<size_t...I>(index_sequence<I...>){return array<T,n>{get<I>(forward_as_tuple(a...))...};}(make_index_sequence<n>{});}
template<class V>concept vectorial=is_base_of_v<vector<typename V::value_type>,V>;
template<class T>struct vec_attr{using core_type=T;static constexpr int rank=0;};
template<vectorial V>struct vec_attr<V>{using core_type=typename vec_attr<typename V::value_type>::core_type;static constexpr int rank=vec_attr<typename V::value_type>::rank+1;};
template<class T>using core_t=vec_attr<T>::core_type;
template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;}
template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<string(&e!=&v.back(),vectorial<V>?newline:space);return o;}
template<class V>struct vec:vector<V>{
using vector<V>::vector;
vec(const vector<V>&v){vector<V>::operator=(v);}
template<class...A>requires(sizeof...(A)>=3)vec(A...a){const ll n=sizeof...(a)-1;auto t=pack_slice<ll,n>(a...);ll s[n];fo(i,n)s[i]=t[i];*this=make_vec(s,pack_kth<n>(a...));}
template<class T,ll n,ll i=0>static auto make_vec(const ll(&s)[n],T x){if constexpr(i==n-1)return vec<T>(s[i],x);else{auto X=make_vec<T,n,i+1>(s,x);return vec<decltype(X)>(s[i],X);}}
vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;}
vec operator^(const vec&u)const{return vec{*this}^=u;}
vec&operator+=(const vec&u){vec&v=*this;fo(i,v.size())v[i]+=u[i];return v;}
vec&operator-=(const vec&u){vec&v=*this;fo(i,v.size())v[i]-=u[i];return v;}
vec operator+(const vec&u)const{return vec{*this}+=u;}
vec operator-(const vec&u)const{return vec{*this}-=u;}
vec&operator++(){fe(*this,e)++e;return*this;}
vec&operator--(){fe(*this,e)--e;return*this;}
vec operator-()const{vec v=*this;fe(v,e)e=-e;return v;}
ll size()const{return vector<V>::size();}
void emplace_front(const V&x={}){this->emplace(this->begin(),x);}
auto pop_front(){auto r=*this->begin();this->erase(this->begin());return r;}
auto scan(const auto&f)const{pair<core_t<V>,bool>r{};fe(*this,e)if constexpr(!vectorial<V>)r.b?f(r.a,e),r:r={e,1};else if(auto s=e.scan(f);s.b)r.b?f(r.a,s.a),r:r=s;return r;}
auto sum()const{return scan([](auto&a,const auto&b){a+=b;}).a;}
template<class F=less<>>auto sort(F f={})const{vec v=*this;ranges::sort(v,f);return v;}
};
template<ll rank,class T>struct tensor_helper{using type=vec<typename tensor_helper<rank-1,T>::type>;};
template<class T>struct tensor_helper<0,T>{using type=T;};
template<ll rank,class T>using tensor=typename tensor_helper<rank,T>::type;
template<class...A>requires(sizeof...(A)>=2)vec(A...a)->vec<tensor<sizeof...(a)-2,remove_reference_t<decltype(get<sizeof...(a)-1>(declval<tuple<A...>>()))>>>;
vec(ll)->vec<ll>;
template<ll n,class...A>void setsize(const ll(&l)[n],A&...a){((a=vec<void*>::make_vec(l,core_t<A>{})),...);}
void lin(auto&...a){(cin>>...>>a);}
template<char c=space>void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<string(--n>0,c)),...);cout<<newline;}
template<class T,class U=T>auto rle(const vec<T>&a){vec<pair<T,U>>r;fe(a,e)r.size()&&e==r.back().a?++r.back().b:r.eb(e,1).b;return r;}
template<class T,class U=T>auto rce(vec<T>a){return rle<T,U>(sort(a));}
auto mod(auto a,auto m){return(a%=m)<0?a+m:a;}
struct montgomery64{
using modular=montgomery64;
using i64=__int64_t;
using u64=__uint64_t;
using u128=__uint128_t;
static inline u64 N;
static inline u64 N_inv;
static inline u64 R2;
static int set_mod(u64 N){
if(modular::N==N)return 0;
assert(N<(1ULL<<63));
assert(N&1);
modular::N=N;
R2=-u128(N)%N;
N_inv=N;
fo(5)N_inv*=2-N*N_inv;
assert(N*N_inv==1);
return 0;
}
static inline int init=set_mod(998244353);
static u64 mod(){return N;}
u64 a;
montgomery64(const i64&a=0):a(reduce((u128)(a%(i64)N+N)*R2)){}
static u64 reduce(const u128&T){
u128 r=(T+u128(u64(T)*-N_inv)*N)>>64;
return r>=N?r-N:r;
}
auto&operator+=(const modular&b){if((a+=b.a)>=N)a-=N;return*this;}
auto&operator-=(const modular&b){if(i64(a-=b.a)<0)a+=N;return*this;}
auto&operator*=(const modular&b){a=reduce(u128(a)*b.a);return*this;}
auto&operator/=(const modular&b){*this*=b.inv();return*this;}
friend auto operator+(const modular&a,const modular&b){return modular{a}+=b;}
friend auto operator-(const modular&a,const modular&b){return modular{a}-=b;}
friend auto operator*(const modular&a,const modular&b){return modular{a}*=b;}
friend auto operator/(const modular&a,const modular&b){return modular{a}/=b;}
friend bool operator==(const modular&a,const modular&b){return a.a==b.a;}
auto operator-()const{return modular{}-modular{*this};}
modular pow(u128 n)const{
modular r{1},x{*this};
while(n){
if(n&1)r*=x;
x*=x;
n>>=1;
}
return r;
}
modular inv()const{u64 a=val(),b=N,u=1,v=0;assert(gcd(a,b)==1);while(b)swap(u-=a/b*v,v),swap(a-=a/b*b,b);return u;}
u64 val()const{return reduce(a);}
friend istream&operator>>(istream&i,montgomery64&b){ll t;i>>t;b=t;return i;}
friend ostream&operator<<(ostream&o,const montgomery64&b){return o<<b.val();}
};
ll rand(auto...a){array<ll,2>v{};ll I=0;((v[I++]=a),...);auto[l,r]=v;if(I==1)swap(l,r);static ll t=495;t^=t<<7,t^=t>>9;return l<r?(t%(r-l)+(t%(r-l)<0?r-l:0))+l:t;}
bool miller_rabin(ll n,vec<ll>as){
ll d=n-1;
while(~d&1)d>>=1;
using modular=montgomery64;
auto pre_mod=modular::mod();
modular::set_mod(n);
modular one=1,minus_one=n-1;
fe(as,a){
if(a%n==0)continue;
ll t=d;
modular y=modular(a).pow(t);
while(t!=n-1&&y!=one&&y!=minus_one)y*=y,t<<=1;
if(y!=minus_one&&~t&1)return modular::set_mod(pre_mod),0;
}
return modular::set_mod(pre_mod),1;
}
bool is_prime(ll n){
if(~n&1)return n==2;
if(n<=1)return 0;
if(n<4759123141LL)return miller_rabin(n,{2,7,61});
return miller_rabin(n,{2,325,9375,28178,450775,9780504,1795265022});
}
ll pollard_rho(ll n){
if(~n&1)return 2;
if(is_prime(n))return n;
using modular=montgomery64;
auto pre_mod=modular::mod();
modular::set_mod(n);
modular R,one=1;
auto f=[&](const modular&x){return x*x+R;};
while(1){
modular x,y,ys,q=one;
R=rand(2,n),y=rand(2,n);
ll g=1;
constexpr ll m=128;
for(ll r=1;g==1;r<<=1){
x=y;
fo(r)y=f(y);
for(ll k=0;g==1&&k<r;k+=m){
ys=y;
for(ll i=0;i<m&&i<r-k;++i)q*=x-(y=f(y));
g=std::gcd(q.val(),n);
}
}
if(g==n)do g=std::gcd((x-(ys=f(ys))).val(),n);while(g==1);
if(g!=n)return modular::set_mod(pre_mod),g;
}
}
auto factorize(ll n){
assert(n>0);
auto f=[](auto&f,ll m){
if(m==1)return vec<ll>{};
ll d=pollard_rho(m);
return d==m?vec<ll>{d}:f(f,d)^f(f,m/d);
};
return rce(f(f,n));
}
ll primitive_root(ll p){
assert(is_prime(p));
if(p==2)return 1;
vec<ll>primes;
fe(factorize(p-1),a,b)primes.eb(a);
using modular=montgomery64;
auto pre_mod=modular::mod();
modular::set_mod(p);
while(1){
modular a=rand(1,p);
bool f=1;
fe(primes,k)if(a.pow((p-1)/k).val()==1)f=0;
if(f){
ll g=a.val();
return modular::set_mod(pre_mod),g;
}
}
}
template<class T>auto index_mul_convolution(vec<T>a,vec<T>b){
ll P=a.size();
assert(is_prime(P));
ll g=primitive_root(P);
vec pow_g(P);
pow_g[0]=1;
fo(i,1,P)pow_g[i]=pow_g[i-1]*g%P;
vec<T>a_dash(P),b_dash(P);
fo(i,1,P){
a_dash[i]=a[pow_g[i]];
b_dash[i]=b[pow_g[i]];
}
vec<T>c_dash=atcoder::convolution(a_dash,b_dash);
fo(i,P,P*2-1)c_dash[i-(P-1)]+=c_dash[i];
vec<T>c(P);
c[0]=a[0]*b.sum()+a.sum()*b[0]-a[0]*b[0];
fo(i,1,P)c[pow_g[i]]=c_dash[i];
return c;
}
single_testcase
void solve(){
LL(P);
VL(P-1,a,b);
a.emplace_front();
b.emplace_front();
auto c=index_mul_convolution(a,b);
c.pop_front();
pp(c);
}}