結果
問題 | No.931 Multiplicative Convolution |
ユーザー |
|
提出日時 | 2025-01-27 20:01:02 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,948 bytes |
コンパイル時間 | 8,388 ms |
コンパイル使用メモリ | 332,952 KB |
実行使用メモリ | 12,792 KB |
最終ジャッジ日時 | 2025-01-27 20:01:13 |
合計ジャッジ時間 | 10,035 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 4 WA * 10 |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; namespace my{ #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define VL(n,...) vec<ll>__VA_ARGS__;setsize({n},__VA_ARGS__);lin(__VA_ARGS__) #define FO(n) for(ll ij=n;ij-->0;) #define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step) #define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__)) #define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a) #define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);} using ll=long long; using ull=unsigned long long; using ulll=__uint128_t; using lll=__int128_t; istream&operator>>(istream&i,ulll&x){ull t;i>>t;x=t;return i;} ostream&operator<<(ostream&o,const ulll&x){return(x<10?o:o<<x/10)<<ll(x%10);} istream&operator>>(istream&i,lll&x){ll t;i>>t;x=t;return i;} ostream&operator<<(ostream&o,const lll&x){return o<<string(x<0,'-')<<ulll(x>0?x:-x);} constexpr auto range(bool s,auto...a){array<ll,3>r{0,0,1};ll I=0;((r[I++]=a),...);if(!s&&I==1)swap(r[0],r[1]);r[0]-=s;if(s)r[2]*=-1;return r;} constexpr char newline=10; constexpr char space=32; constexpr auto abs(auto x){return x<0?-x:x;} lll pow(lll x,ll n){assert(n>=0);lll r=1;while(n)n&1?r*=x:r,x*=x,n>>=1;return r;} template<class T,class U>common_type_t<T,U>gcd(T a,U b){return b?gcd(b,a%b):abs(a);} auto gcd(auto...a){common_type_t<decltype(a)...>r=0;((r=gcd(r,a)),...);return r;} template<class A,class B>struct pair{ A a;B b; pair()=default; pair(A a,B b):a(a),b(b){} pair(const std::pair<A,B>&p):a(p.first),b(p.second){} auto operator<=>(const pair&)const=default; pair operator+(const pair&p)const{return{a+p.a,b+p.b};} friend istream&operator>>(istream&i,pair&p){return i>>p.a>>p.b;} friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<space<<p.b;} }; template<class F=less<>>auto&sort(auto&a,F f={}){ranges::sort(a,f);return a;} template<ll k>auto pack_kth(const auto&...a){return get<k>(make_tuple(a...));} template<class T,ll n>auto pack_slice(const auto&...a){return[&]<size_t...I>(index_sequence<I...>){return array<T,n>{get<I>(forward_as_tuple(a...))...};}(make_index_sequence<n>{});} template<class V>concept vectorial=is_base_of_v<vector<typename V::value_type>,V>; template<class T>struct vec_attr{using core_type=T;static constexpr int rank=0;}; template<vectorial V>struct vec_attr<V>{using core_type=typename vec_attr<typename V::value_type>::core_type;static constexpr int rank=vec_attr<typename V::value_type>::rank+1;}; template<class T>using core_t=vec_attr<T>::core_type; template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;} template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<string(&e!=&v.back(),vectorial<V>?newline:space);return o;} template<class V>struct vec:vector<V>{ using vector<V>::vector; vec(const vector<V>&v){vector<V>::operator=(v);} template<class...A>requires(sizeof...(A)>=3)vec(A...a){const ll n=sizeof...(a)-1;auto t=pack_slice<ll,n>(a...);ll s[n];fo(i,n)s[i]=t[i];*this=make_vec(s,pack_kth<n>(a...));} template<class T,ll n,ll i=0>static auto make_vec(const ll(&s)[n],T x){if constexpr(i==n-1)return vec<T>(s[i],x);else{auto X=make_vec<T,n,i+1>(s,x);return vec<decltype(X)>(s[i],X);}} vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} vec operator^(const vec&u)const{return vec{*this}^=u;} vec&operator+=(const vec&u){vec&v=*this;fo(i,v.size())v[i]+=u[i];return v;} vec&operator-=(const vec&u){vec&v=*this;fo(i,v.size())v[i]-=u[i];return v;} vec operator+(const vec&u)const{return vec{*this}+=u;} vec operator-(const vec&u)const{return vec{*this}-=u;} vec&operator++(){fe(*this,e)++e;return*this;} vec&operator--(){fe(*this,e)--e;return*this;} vec operator-()const{vec v=*this;fe(v,e)e=-e;return v;} ll size()const{return vector<V>::size();} void emplace_front(const V&x={}){this->emplace(this->begin(),x);} auto pop_front(){auto r=*this->begin();this->erase(this->begin());return r;} auto scan(const auto&f)const{pair<core_t<V>,bool>r{};fe(*this,e)if constexpr(!vectorial<V>)r.b?f(r.a,e),r:r={e,1};else if(auto s=e.scan(f);s.b)r.b?f(r.a,s.a),r:r=s;return r;} auto sum()const{return scan([](auto&a,const auto&b){a+=b;}).a;} template<class F=less<>>auto sort(F f={})const{vec v=*this;ranges::sort(v,f);return v;} }; template<ll rank,class T>struct tensor_helper{using type=vec<typename tensor_helper<rank-1,T>::type>;}; template<class T>struct tensor_helper<0,T>{using type=T;}; template<ll rank,class T>using tensor=typename tensor_helper<rank,T>::type; template<class...A>requires(sizeof...(A)>=2)vec(A...a)->vec<tensor<sizeof...(a)-2,remove_reference_t<decltype(get<sizeof...(a)-1>(declval<tuple<A...>>()))>>>; vec(ll)->vec<ll>; template<ll n,class...A>void setsize(const ll(&l)[n],A&...a){((a=vec<void*>::make_vec(l,core_t<A>{})),...);} void lin(auto&...a){(cin>>...>>a);} template<char c=space>void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<string(--n>0,c)),...);cout<<newline;} template<class T,class U=T>auto rle(const vec<T>&a){vec<pair<T,U>>r;fe(a,e)r.size()&&e==r.back().a?++r.back().b:r.eb(e,1).b;return r;} template<class T,class U=T>auto rce(vec<T>a){return rle<T,U>(sort(a));} auto mod(auto a,auto m){return(a%=m)<0?a+m:a;} struct montgomery64{ using modular=montgomery64; using i64=__int64_t; using u64=__uint64_t; using u128=__uint128_t; static inline u64 N; static inline u64 N_inv; static inline u64 R2; static int set_mod(u64 N){ if(modular::N==N)return 0; assert(N<(1ULL<<63)); assert(N&1); modular::N=N; R2=-u128(N)%N; N_inv=N; fo(5)N_inv*=2-N*N_inv; assert(N*N_inv==1); return 0; } static inline int init=set_mod(998244353); static u64 mod(){return N;} u64 a; montgomery64(const i64&a=0):a(reduce((u128)(a%(i64)N+N)*R2)){} static u64 reduce(const u128&T){ u128 r=(T+u128(u64(T)*-N_inv)*N)>>64; return r>=N?r-N:r; } auto&operator+=(const modular&b){if((a+=b.a)>=N)a-=N;return*this;} auto&operator-=(const modular&b){if(i64(a-=b.a)<0)a+=N;return*this;} auto&operator*=(const modular&b){a=reduce(u128(a)*b.a);return*this;} auto&operator/=(const modular&b){*this*=b.inv();return*this;} friend auto operator+(const modular&a,const modular&b){return modular{a}+=b;} friend auto operator-(const modular&a,const modular&b){return modular{a}-=b;} friend auto operator*(const modular&a,const modular&b){return modular{a}*=b;} friend auto operator/(const modular&a,const modular&b){return modular{a}/=b;} friend bool operator==(const modular&a,const modular&b){return a.a==b.a;} auto operator-()const{return modular{}-modular{*this};} modular pow(u128 n)const{ modular r{1},x{*this}; while(n){ if(n&1)r*=x; x*=x; n>>=1; } return r; } modular inv()const{u64 a=val(),b=N,u=1,v=0;assert(gcd(a,b)==1);while(b)swap(u-=a/b*v,v),swap(a-=a/b*b,b);return u;} u64 val()const{return reduce(a);} friend istream&operator>>(istream&i,montgomery64&b){ll t;i>>t;b=t;return i;} friend ostream&operator<<(ostream&o,const montgomery64&b){return o<<b.val();} }; ll rand(auto...a){array<ll,2>v{};ll I=0;((v[I++]=a),...);auto[l,r]=v;if(I==1)swap(l,r);static ll t=495;t^=t<<7,t^=t>>9;return l<r?(t%(r-l)+(t%(r-l)<0?r-l:0))+l:t;} bool miller_rabin(ll n,vec<ll>as){ ll d=n-1; while(~d&1)d>>=1; using modular=montgomery64; auto pre_mod=modular::mod(); modular::set_mod(n); modular one=1,minus_one=n-1; fe(as,a){ if(a%n==0)continue; ll t=d; modular y=modular(a).pow(t); while(t!=n-1&&y!=one&&y!=minus_one)y*=y,t<<=1; if(y!=minus_one&&~t&1)return modular::set_mod(pre_mod),0; } return modular::set_mod(pre_mod),1; } bool is_prime(ll n){ if(~n&1)return n==2; if(n<=1)return 0; if(n<4759123141LL)return miller_rabin(n,{2,7,61}); return miller_rabin(n,{2,325,9375,28178,450775,9780504,1795265022}); } ll pollard_rho(ll n){ if(~n&1)return 2; if(is_prime(n))return n; using modular=montgomery64; auto pre_mod=modular::mod(); modular::set_mod(n); modular R,one=1; auto f=[&](const modular&x){return x*x+R;}; while(1){ modular x,y,ys,q=one; R=rand(2,n),y=rand(2,n); ll g=1; constexpr ll m=128; for(ll r=1;g==1;r<<=1){ x=y; fo(r)y=f(y); for(ll k=0;g==1&&k<r;k+=m){ ys=y; for(ll i=0;i<m&&i<r-k;++i)q*=x-(y=f(y)); g=std::gcd(q.val(),n); } } if(g==n)do g=std::gcd((x-(ys=f(ys))).val(),n);while(g==1); if(g!=n)return modular::set_mod(pre_mod),g; } } auto factorize(ll n){ assert(n>0); auto f=[](auto&f,ll m){ if(m==1)return vec<ll>{}; ll d=pollard_rho(m); return d==m?vec<ll>{d}:f(f,d)^f(f,m/d); }; return rce(f(f,n)); } ll primitive_root(ll p){ assert(is_prime(p)); if(p==2)return 1; vec<ll>primes; fe(factorize(p-1),a,b)primes.eb(a); using modular=montgomery64; auto pre_mod=modular::mod(); modular::set_mod(p); while(1){ modular a=rand(1,p); bool f=1; fe(primes,k)if(a.pow((p-1)/k).val()==1)f=0; if(f){ ll g=a.val(); return modular::set_mod(pre_mod),g; } } } template<class T>auto index_mul_convolution(vec<T>a,vec<T>b){ ll P=a.size(); assert(is_prime(P)); ll g=primitive_root(P); vec pow_g(P); pow_g[0]=1; fo(i,1,P)pow_g[i]=pow_g[i-1]*g%P; vec<T>a_dash(P),b_dash(P); fo(i,1,P){ a_dash[i]=a[pow_g[i]]; b_dash[i]=b[pow_g[i]]; } vec<T>c_dash=atcoder::convolution(a_dash,b_dash); fo(i,P,P*2-1)c_dash[i-(P-1)]+=c_dash[i]; vec<T>c(P); c[0]=a[0]*b.sum()+a.sum()*b[0]-a[0]*b[0]; fo(i,1,P)c[pow_g[i]]=c_dash[i]; return c; } single_testcase void solve(){ LL(P); VL(P-1,a,b); a.emplace_front(); b.emplace_front(); auto c=index_mul_convolution(a,b); c.pop_front(); pp(c); }}