結果

問題 No.3006 ベイカーの問題
ユーザー Mao-beta
提出日時 2025-02-03 15:39:59
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 2,269 bytes
コンパイル時間 576 ms
コンパイル使用メモリ 82,588 KB
実行使用メモリ 58,516 KB
最終ジャッジ日時 2025-02-03 15:40:04
合計ジャッジ時間 3,302 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 22 WA * 2
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
import math
import bisect
from heapq import heapify, heappop, heappush
from collections import deque, defaultdict, Counter
from functools import lru_cache
from itertools import accumulate, combinations, permutations, product
sys.set_int_max_str_digits(10 ** 6)
sys.setrecursionlimit(1000000)
MOD = 10 ** 9 + 7
MOD99 = 998244353
input = lambda: sys.stdin.readline().strip()
NI = lambda: int(input())
NMI = lambda: map(int, input().split())
NLI = lambda: list(NMI())
SI = lambda: input()
SMI = lambda: input().split()
SLI = lambda: list(SMI())
EI = lambda m: [NLI() for _ in range(m)]
#
def mul_matrix(A, B, mod=998244353):
Ah = len(A)
Aw = len(A[0])
Bh = len(B)
Bw = len(B[0])
assert Aw == Bh
C = [[0] * Bw for _ in range(Ah)]
for h in range(Ah):
Arow = A[h]
Crow = C[h]
for i in range(Aw):
a = Arow[i]
Brow = B[i]
for w in range(Bw):
Crow[w] = (Crow[w] + a * Brow[w]) % mod
return C
# mod
def pow_matrix(A, n, mod=998244353):
assert len(A) == len(A[0])
bitn = len(bin(n)) - 2
pows = []
size = len(A)
E = [[0] * size for _ in range(size)]
for i in range(size):
E[i][i] = 1
pows.append(A)
ans = E
for i in range(bitn):
if (n >> i) & 1:
ans = mul_matrix(pows[-1], ans, mod)
pows.append(mul_matrix(pows[-1], pows[-1], mod))
return ans
def main():
X1, Y1, N = NMI()
if X1 == Y1 == 0:
print(X1, Y1)
return
if X1 == 1 and Y1 == 0:
print(N%MOD99, 0)
return
A = [[X1, -5*Y1],
[Y1, X1]]
# (XN, YN)T = A^(N-1) * (X1, Y1)T
# A^(N-1)+...+A^0 = (A^N - E) * (A-E)^-1
X = pow_matrix(A, N, MOD99)
XE = [[X[0][0]-1, X[0][1]],
[X[1][0], X[1][1]-1]]
AE = [[X1-1, -5*Y1],
[Y1, X1-1]]
d = AE[0][0]*AE[1][1]-AE[0][1]*AE[1][0]
dinv = pow(d, MOD99-2, MOD99)
AEinv = [[AE[1][1]*dinv, -AE[0][1]*dinv],
[-AE[1][0]*dinv, AE[0][0]*dinv]]
X = mul_matrix(XE, AEinv, MOD99)
x = X[0][0] * X1 + X[0][1] * Y1
y = X[1][0] * X1 + X[1][1] * Y1
print(x%MOD99, y%MOD99)
if __name__ == "__main__":
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0