結果

問題 No.2578 Jewelry Store
ユーザー miscalc
提出日時 2025-02-09 05:50:14
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 960 ms / 3,500 ms
コード長 47,716 bytes
コンパイル時間 4,329 ms
コンパイル使用メモリ 328,548 KB
実行使用メモリ 9,472 KB
最終ジャッジ日時 2025-02-09 05:50:29
合計ジャッジ時間 13,149 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 54
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define SINGLE_TESTCASE
#define FAST_CIO
#define INF 4'000'000'000'000'000'037LL
#define EPS 1e-11
#include <bits/stdc++.h>
using namespace std;
#ifndef EPS
#define EPS 1e-11
#endif
using ld = decltype(EPS);
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
using pll = pair<ll, ll>;
using tlll = tuple<ll, ll, ll>;
using tllll = tuple<ll, ll, ll, ll>;
#define vc vector
template <class T>
using vvc = vc<vc<T>>;
template <class T>
using vvvc = vc<vc<vc<T>>>;
using vb = vc<bool>;
using vl = vc<ll>;
using vpll = vc<pll>;
using vtlll = vc<tlll>;
using vtllll = vc<tllll>;
using vstr = vc<string>;
using vvb = vvc<bool>;
using vvl = vvc<ll>;
template <class T>
using pql = priority_queue<T, vc<T>, greater<T>>;
template <class T>
using pqg = priority_queue<T>;
#ifdef __SIZEOF_INT128__
using i128 = __int128_t;
using u128 = __uint128_t;
i128 stoi128(const string &s)
{
i128 res = 0;
if (s.front() == '-')
{
for (int i = 1; i < (int)s.size(); i++)
res = 10 * res + s[i] - '0';
res = -res;
}
else
{
for (auto &&c : s)
res = 10 * res + c - '0';
}
return res;
}
string i128tos(i128 x)
{
if (x == 0) return "0";
string sign = "", res = "";
if (x < 0)
x = -x, sign = "-";
while (x > 0)
{
res += '0' + x % 10;
x /= 10;
}
reverse(res.begin(), res.end());
return sign + res;
}
istream &operator>>(istream &is, i128 &a)
{
string s;
is >> s;
a = stoi128(s);
return is;
}
ostream &operator<<(ostream &os, const i128 &a)
{
os << i128tos(a);
return os;
}
#endif
#define cauto const auto
#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(i, n) for (ll i = 0, nnnnn = ll(n); i < nnnnn; i++)
#define rep2(i, l, r) for (ll i = ll(l), rrrrr = ll(r); i < rrrrr; i++)
#define rep3(i, l, r, d) for (ll i = ll(l), rrrrr = ll(r), ddddd = ll(d); ddddd > 0 ? i < rrrrr : i > rrrrr; i += d)
#define rep(...) overload4(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__)
#define repi1(i, n) for (int i = 0, nnnnn = int(n); i < nnnnn; i++)
#define repi2(i, l, r) for (int i = int(l), rrrrr = int(r); i < rrrrr; i++)
#define repi3(i, l, r, d) for (int i = int(l), rrrrr = int(r), ddddd = int(d); ddddd > 0 ? i < rrrrr : i > rrrrr; i += d)
#define repi(...) overload4(__VA_ARGS__, repi3, repi2, repi1)(__VA_ARGS__)
#define fe(...) for (auto __VA_ARGS__)
#define fec(...) for (cauto &__VA_ARGS__)
#define fem(...) for (auto &__VA_ARGS__)
#ifndef INF
#define INF 4'000'000'000'000'000'037LL
#endif
#ifndef EPS
#define EPS 1e-11
#endif
template <class T = ll>
inline constexpr T divfloor(cauto &a, cauto &b) { return T(a) / T(b) - (T(a) % T(b) && (T(a) ^ T(b)) < 0); }
template <class T = ll>
inline constexpr T safemod(cauto &a, cauto &b) { return T(a) - T(b) * divfloor<T>(a, b); }
template <class T = ll>
constexpr T ipow(cauto &a, auto b)
{
assert(b >= 0);
if (b == 0)
return 1;
if (a == 0 || a == 1)
return a;
if (a < 0 && a == -1)
return b & 1 ? -1 : 1;
T res = 1, tmp = a;
while (true)
{
if (b & 1)
res *= tmp;
b >>= 1;
if (b == 0)
break;
tmp *= tmp;
}
return res;
}
#define ALL(a) (a).begin(), (a).end()
template <class T = ll>
inline T SZ(cauto &x) { return x.size(); }
template <class T, size_t d, size_t i = 0>
auto dvec(cauto (&sz)[d], const T &init)
{
if constexpr (i < d)
return vc(sz[i], dvec<T, d, i + 1>(sz, init));
else
return init;
}
#ifndef INF
#define INF 4'000'000'000'000'000'037LL
#endif
template <class T = ll>
struct max_op
{
T operator()(const T &a, const T &b) const { return max(a, b); }
};
template <class T = ll>
struct min_op
{
T operator()(const T &a, const T &b) const { return min(a, b); }
};
template <class T, const T val>
struct const_fn
{
T operator()() const { return val; }
};
using max_e = const_fn<ll, -INF>;
using min_e = const_fn<ll, INF>;
using zero_fn = const_fn<ll, 0LL>;
#ifndef INF
#define INF 4'000'000'000'000'000'037LL
#endif
#if __cplusplus < 202002L
template <class V, class... Args>
V sorted(V v, Args&&... args)
{
sort(ALL(v), forward<Args>(args)...);
return v;
}
#else
#endif
template <class V>
void unique(V &v) { v.erase(unique(ALL(v)), v.end()); }
template <class V, class U>
void rotate(V &v, U k)
{
const U n = v.size();
k = (k % n + n) % n;
rotate(v.begin(), v.begin() + k, v.end());
}
template <class T>
vvc<T> top(const vvc<T> &a)
{
if (a.empty())
return {};
const int n = a.size(), m = a[0].size();
vvc<T> b(m, vc<T>(n));
repi(i, n)
{
assert(SZ<int>(a[i]) == m);
repi(j, m) b[j][i] = a[i][j];
}
return b;
}
vstr top(const vstr &a)
{
vvc<char> a_(a.size());
repi(i, SZ<int>(a)) a_[i] = {ALL(a[i])};
vvc<char> b_ = top(a_);
vstr b(b_.size());
repi(i, SZ<int>(b)) b[i] = {ALL(b_[i])};
return b;
}
template <class T = ll>
struct direct_product
{
private:
vc<T> a;
public:
direct_product(const vc<T> &a) : a(a)
{
assert(!a.empty());
fec(ai : a) assert(ai >= 1);
}
struct Iterator
{
private:
vc<T> b;
const direct_product &prod;
public:
Iterator(const vc<T> &b, const direct_product &prod) : b(b), prod(prod) {}
vc<T> operator*() const { return b; }
Iterator& operator++()
{
b.back()++;
repi(i, SZ<int>(prod.a) - 1, 0, -1)
{
if (b[i] == prod.a[i])
{
b[i] = 0;
b[i - 1]++;
}
else
break;
}
return *this;
}
bool operator!=(const Iterator &other) const { return b != other.b; }
};
Iterator begin() const { return Iterator(vc<T>(a.size(), 0), *this); }
Iterator end() const
{
vc<T> c(a.size(), 0);
c[0] = a[0];
return Iterator(c, *this);
}
};
const vpll DRULgrid = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
const vpll DRULplane = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}};
#if __cplusplus < 202002L
template <class T = ll, class V, class... Args>
inline T LB(const V &v, Args&&... args)
{ return lower_bound(ALL(v), forward<Args>(args)...) - v.begin(); }
template <class T = ll, class V, class... Args>
inline T UB(const V &v, Args&&... args)
{ return upper_bound(ALL(v), forward<Args>(args)...) - v.begin(); }
#else
#endif
template <class T>
struct is_random_access_iterator
{
static constexpr bool value = is_same_v<
typename iterator_traits<T>::iterator_category,
random_access_iterator_tag
>;
};
template <class T>
constexpr bool is_random_access_iterator_v = is_random_access_iterator<T>::value;
inline constexpr ull MASK(auto k) { return (1ULL << k) - 1ULL; }
#if __cplusplus < 202002L
inline constexpr ull bit_width(ull x) { return x == 0 ? 0 : 64 - __builtin_clzll(x); }
inline constexpr ull bit_floor(ull x) { return x == 0 ? 0ULL : 1ULL << (bit_width(x) - 1); }
inline constexpr ull bit_ceil(ull x) { return x == 0 ? 1ULL : 1ULL << bit_width(x - 1); }
inline constexpr ull countr_zero(ull x) { assert(x != 0); return __builtin_ctzll(x); }
inline constexpr ull popcount(ull x) { return __builtin_popcountll(x); }
inline constexpr bool has_single_bit(ull x) { return popcount(x) == 1; }
#else
inline constexpr ll countr_zero(ll x) { assert(x != 0); return countr_zero((ull)x); }
inline constexpr ll popcount(ll x) { return popcount((ull)x); }
inline constexpr bool has_single_bit(ll x) { return has_single_bit((ull)x); }
#endif
inline constexpr bool btest(ull x, uint k) { return (x >> k) & 1; }
template <class T>
inline void bset(T &x, uint k, bool b = 1) { b ? x |= (1ULL << k) : x &= ~(1ULL << k); }
template <class T>
struct bsubsets
{
private:
T x;
public:
bsubsets(T x) : x(x) {}
struct Iterator
{
private:
T y;
bool is_end;
const bsubsets &bs;
public:
Iterator(T y, bool is_end, const bsubsets &bs) : y(y), is_end(is_end), bs(bs) {}
T operator*() const { return y; }
Iterator& operator++()
{
if (y == 0)
is_end = true;
y = (y - 1) & bs.x;
return *this;
}
bool operator!=(const Iterator &other) const { return y != other.y || is_end != other.is_end; }
};
Iterator begin() const { return Iterator(x, false, *this); }
Iterator end() const { return Iterator(x, true, *this); }
};
template <class T>
struct bsupsets
{
private:
int n;
T x;
public:
bsupsets(int n, T x) : n(n), x(x) {}
struct Iterator
{
private:
T y;
const bsupsets &bs;
public:
Iterator(T y, const bsupsets &bs) : y(y), bs(bs) {}
T operator*() const { return y; }
Iterator& operator++()
{
y = (y + 1) | bs.x;
return *this;
}
bool operator!=(const Iterator &other) const { return y != other.y; }
};
Iterator begin() const { return Iterator(x, *this); }
Iterator end() const { return Iterator((T(1) << n) | x, *this); }
};
#ifdef LOCAL
#include <cpp-dump.hpp> // https://github.com/philip82148/cpp-dump
namespace cpp_dump::_detail
{
} // namespace cpp_dump::_detail
#define dump(...) cpp_dump(__VA_ARGS__)
namespace cp = cpp_dump;
CPP_DUMP_SET_OPTION_GLOBAL(log_label_func, cp::log_label::line());
CPP_DUMP_SET_OPTION_GLOBAL(max_iteration_count, 10000);
#define local(...) __VA_ARGS__
#else
#define dump(...)
#define local(...)
#endif
namespace fastio {
static constexpr uint32_t SIZ = 1 << 17;
char ibuf[SIZ];
char obuf[SIZ];
char out[100];
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SIZ - pir + pil, stdin);
pil = 0;
if (pir < SIZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd1(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd1(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd1_real(T &x) {
string s;
rd1(s);
x = stod(s);
}
template <typename T>
void rd1_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd1(int &x) { rd1_integer(x); }
void rd1(ll &x) { rd1_integer(x); }
void rd1(i128 &x) { rd1_integer(x); }
void rd1(uint &x) { rd1_integer(x); }
void rd1(ull &x) { rd1_integer(x); }
void rd1(u128 &x) { rd1_integer(x); }
void rd1(double &x) { rd1_real(x); }
void rd1(long double &x) { rd1_real(x); }
template <class T, class U>
void rd1(pair<T, U> &p) {
return rd1(p.first), rd1(p.second);
}
template <size_t N = 0, typename T>
void rd1_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd1(x);
rd1_tuple<N + 1>(t);
}
}
template <class... T>
void rd1(tuple<T...> &tpl) {
rd1_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd1(array<T, N> &x) {
for (auto &d: x) rd1(d);
}
template <class T>
void rd1(vc<T> &x) {
for (auto &d: x) rd1(d);
}
void wt1(const char c) {
if (por == SIZ) flush();
obuf[por++] = c;
}
void wt1(const string s) {
for (char c: s) wt1(c);
}
void wt1(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt1(s[i]);
}
template <typename T>
void wt1_integer(T x) {
if (por > SIZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt1_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt1(s);
}
template <class T, enable_if_t<is_integral_v<T>, int> = 0>
void wt1(T x) { wt1_integer(x); }
void wt1(i128 x) { wt1_integer(x); }
void wt1(u128 x) { wt1_integer(x); }
void wt1(double x) { wt1_real(x); }
void wt1(long double x) { wt1_real(x); }
template <class T, class U>
void wt1(const pair<T, U> &val) {
wt1(val.first);
wt1(' ');
wt1(val.second);
}
template <size_t N = 0, typename T>
void wt1_tuple(const T &t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt1(' '); }
const auto x = std::get<N>(t);
wt1(x);
wt1_tuple<N + 1>(t);
}
}
template <class... T>
void wt1(const tuple<T...> &tpl) {
wt1_tuple(tpl);
}
template <class T, size_t S>
void wt1(const array<T, S> &val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt1(' ');
wt1(val[i]);
}
}
template <class T>
void wt1(const vector<T> &val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt1(' ');
wt1(val[i]);
}
}
} // namespace fastio
#if defined FAST_IO and not defined LOCAL
struct Dummy {
Dummy() { atexit(fastio::flush); }
} dummy;
#endif
template <class T, class U>
istream &operator>>(istream &is, pair<T, U> &p)
{
is >> p.first >> p.second;
return is;
}
template <class... Ts>
istream &operator>>(istream &is, tuple<Ts...> &t)
{
apply([&](auto &...a)
{ (is >> ... >> a); }, t);
return is;
}
template <class T, size_t n>
istream &operator>>(istream &is, array<T, n> &a)
{
for (size_t i = 0; i < n; i++)
is >> a[i];
return is;
}
template <class T>
istream &operator>>(istream &is, vc<T> &a)
{
const size_t n = a.size();
for (size_t i = 0; i < n; i++)
is >> a[i];
return is;
}
namespace internal
{
template <class... Ts>
void CIN(Ts &...a) { (cin >> ... >> a); }
#if defined FAST_IO and not defined LOCAL
template <class... Ts>
void READnodump(Ts &...a) { fastio::read(a...); }
#else
template <class... Ts>
void READnodump(Ts &...a) { CIN(a...); }
#endif
template <class T>
void READVECnodump(int n, vc<T> &v)
{
v.resize(n);
READnodump(v);
}
template <class T, class... Ts>
void READVECnodump(int n, vc<T> &v, vc<Ts> &...vs)
{ READVECnodump(n, v), READVECnodump(n, vs...); }
template <class T>
void READVEC2nodump(int n, int m, vvc<T> &v)
{
v.assign(n, vc<T>(m));
READnodump(v);
}
template <class T, class... Ts>
void READVEC2nodump(int n, int m, vvc<T> &v, vvc<Ts> &...vs)
{ READVEC2nodump(n, m, v), READVEC2nodump(n, m, vs...); }
template <class T>
void READJAGnodump(int n, vvc<T> &v)
{
v.resize(n);
repi(i, n)
{
int k;
READnodump(k);
READVECnodump(k, v[i]);
}
}
template <class T, class... Ts>
void READJAGnodump(int n, vvc<T> &v, vvc<Ts> &...vs)
{ READJAGnodump(n, v), READJAGnodump(n, vs...); }
}; // namespace internal
#define READ(...) internal::READnodump(__VA_ARGS__); dump(__VA_ARGS__)
#define IN(T, ...) T __VA_ARGS__; READ(__VA_ARGS__)
#define CHAR(...) IN(char, __VA_ARGS__)
#define INT(...) IN(int, __VA_ARGS__)
#define LL(...) IN(ll, __VA_ARGS__)
#define STR(...) IN(string, __VA_ARGS__)
#define ARR(T, n, ...) array<T, n> __VA_ARGS__; READ(__VA_ARGS__)
#define READVEC(...) internal::READVECnodump(__VA_ARGS__); dump(__VA_ARGS__)
#define READVEC2(...) internal::READVEC2nodump(__VA_ARGS__); dump(__VA_ARGS__)
#define VEC(T, n, ...) vc<T> __VA_ARGS__; READVEC(n, __VA_ARGS__)
#define VEC2(T, n, m, ...) vvc<T> __VA_ARGS__; READVEC2(n, m, __VA_ARGS__)
#define READJAG(...) internal::READJAGnodump(__VA_ARGS__); dump(__VA_ARGS__)
#define JAG(T, n, ...) vvc<T> __VA_ARGS__; READJAG(n, __VA_ARGS__)
#ifdef INTERACTIVE
#define ENDL endl
#else
#define ENDL '\n'
#endif
template <class T, class U>
ostream &operator<<(ostream &os, const pair<T, U> &p)
{
os << p.first << ' ' << p.second;
return os;
}
namespace internal
{
template <size_t N = 0, typename T>
void cout_tuple(ostream &os, const T &t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { os << ' '; }
const auto x = std::get<N>(t);
os << x;
cout_tuple<N + 1>(os, t);
}
}
}; // namespace internal
template <class... Ts>
ostream &operator<<(ostream &os, const tuple<Ts...> &t)
{
internal::cout_tuple(os, t);
return os;
}
template <class T, size_t n>
ostream &operator<<(ostream &os, const array<T, n> &a)
{
for (size_t i = 0; i < n; i++)
{
if (i)
os << ' ';
os << a[i];
}
return os;
}
template <class T>
ostream &operator<<(ostream &os, const vc<T> &v)
{
const size_t n = v.size();
for (size_t i = 0; i < n; i++)
{
if (i)
os << ' ';
os << v[i];
}
return os;
}
namespace internal
{
template <class T>
void COUTP() { cout << ENDL; }
template <class T>
void COUTP(const T &a) { cout << a << ENDL; }
template <class T, class... Ts>
void COUTP(const T &a, const Ts &...b)
{
cout << a;
(cout << ... << (cout << ' ', b));
cout << ENDL;
}
}; // namespace internal
#if defined FAST_IO and not defined LOCAL
#define WRITE fastio::write
#define PRINT fastio::print
#else
#define WRITE internal::COUTW
#define PRINT internal::COUTP
#endif
#define PRINTEXIT(...) do { PRINT(__VA_ARGS__); exit(0); } while (false)
#define PRINTRETURN(...) do { PRINT(__VA_ARGS__); return; } while (false)
#define PRINTVEXIT(...) do { PRINTV(__VA_ARGS__); exit(0); } while (false)
#define PRINTVRETURN(...) do { PRINTV(__VA_ARGS__); return; } while (false)
template <class T, class U>
pair<T, U> operator+=(pair<T, U> &a, cauto &b)
{
a.first += b.first;
a.second += b.second;
return a;
}
template <class T, class U>
pair<T, U> operator+(pair<T, U> &a, cauto &b) { return a += b; }
template <class T, size_t n>
array<T, n> operator+=(array<T, n> &a, cauto &b)
{
for (size_t i = 0; i < n; i++)
a[i] += b[i];
return a;
}
template <class T, size_t n>
array<T, n> operator+(array<T, n> &a, cauto &b) { return a += b; }
namespace internal
{
template <size_t... I>
auto tuple_add_impl(auto &a, cauto &b, const index_sequence<I...>)
{
((get<I>(a) += get<I>(b)), ...);
return a;
}
}; // namespace internal
template <class... Ts>
tuple<Ts...> operator+=(tuple<Ts...> &a, cauto &b)
{ return internal::tuple_add_impl(a, b, make_index_sequence<tuple_size_v<tuple<Ts...>>>{}); }
template <class... Ts>
tuple<Ts...> operator+(tuple<Ts...> &a, cauto &b) { return a += b; }
template <class T, const size_t m>
array<vc<T>, m> top(const vc<array<T, m>> &vt)
{
const size_t n = vt.size();
array<vc<T>, m> tv;
tv.fill(vc<T>(n));
for (size_t i = 0; i < n; i++)
for (size_t j = 0; j < m; j++)
tv[j][i] = vt[i][j];
return tv;
}
template <class T, const size_t m>
vc<array<T, m>> top(const array<vc<T>, m> &tv)
{
if (tv.empty()) return {};
const size_t n = tv[0].size();
vc<array<T, m>> vt(n);
for (size_t j = 0; j < m; j++)
{
assert(tv[j].size() == n);
for (size_t i = 0; i < n; i++)
vt[i][j] = tv[j][i];
}
return vt;
}
template <class T, class U>
pair<vc<T>, vc<U>> top(const vc<pair<T, U>> &vt)
{
const size_t n = vt.size();
pair<vc<T>, vc<U>> tv;
tv.first.resize(n), tv.second.resize(n);
for (size_t i = 0; i < n; i++)
tie(tv.first[i], tv.second[i]) = vt[i];
return tv;
}
template <class T, class U>
vc<pair<T, U>> top(const pair<vc<T>, vc<U>> &tv)
{
const size_t n = tv.first.size();
assert(n == tv.second.size());
vc<pair<T, U>> vt(n);
for (size_t i = 0; i < n; i++)
vt[i] = make_pair(tv.first[i], tv.second[i]);
return vt;
}
namespace internal
{
template <size_t... I>
auto vt_to_tv_impl(auto &tv, cauto &t, index_sequence<I...>, size_t index)
{ ((get<I>(tv)[index] = get<I>(t)), ...); }
template <size_t... I>
auto tv_to_vt_impl(cauto &tv, index_sequence<I...>, size_t index)
{ return make_tuple(get<I>(tv)[index]...); }
};
template <class... Ts>
auto top(const vc<tuple<Ts...>> &vt)
{
const size_t n = vt.size();
tuple<vc<Ts>...> tv;
apply([&](auto &...v)
{ ((v.resize(n)), ...); }, tv);
for (size_t i = 0; i < n; i++)
internal::vt_to_tv_impl(tv, vt[i], make_index_sequence<tuple_size_v<decltype(tv)>>{}, i);
return tv;
}
template <class... Ts>
auto top(const tuple<vc<Ts>...> &tv)
{
size_t n = get<0>(tv).size();
apply([&](auto &...v)
{ ((assert(v.size() == n)), ...); }, tv);
vc<tuple<Ts...>> vt(n);
for (size_t i = 0; i < n; i++)
vt[i] = internal::tv_to_vt_impl(tv, index_sequence_for<Ts...>{}, i);
return vt;
}
namespace internal
{
constexpr ll powmod32_constexpr(ll x, ll n, int m)
{
if (m == 1)
return 0;
uint _m = (uint)m;
ull r = 1;
ull y = safemod(x, m);
while (n)
{
if (n & 1)
r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr ll powmod64_constexpr(ll x, ll n, ll m)
{
if (m == 1)
return 0;
ull _m = (ull)m;
ull r = 1;
ull y = safemod(x, m);
while (n)
{
u128 y128(y);
if (n & 1)
r = (y128 * r) % _m;
y = (y128 * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool isprime32_constexpr(int n)
{
if (n <= 1)
return false;
if (n == 2 || n == 7 || n == 61)
return true;
if (n % 2 == 0)
return false;
ll d = n - 1;
while (d % 2 == 0)
d /= 2;
constexpr ll bases[3] = {2, 7, 61};
for (ll a : bases)
{
ll t = d;
ll y = powmod32_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1)
{
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0)
return false;
}
return true;
}
constexpr bool isprime64_constexpr(ll n)
{
if (n <= INT_MAX)
return isprime32_constexpr(n);
if (n % 2 == 0)
return false;
ll d = n - 1;
while (d % 2 == 0)
d /= 2;
constexpr ll bases[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
for (ll a : bases)
{
ll t = d;
ll y = powmod64_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1)
{
y = (u128(y) * y) % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0)
return false;
}
return true;
}
template <int n>
constexpr bool isprime32 = isprime32_constexpr(n);
template <ll n>
constexpr bool isprime64 = isprime64_constexpr(n);
struct barrett32
{
uint m;
ull im;
explicit barrett32(uint m) : m(m), im((ull)(-1) / m + 1) {}
uint umod() const { return m; }
uint mul(uint a, uint b) const
{
ull z = a;
z *= b;
ull x = (ull)((u128(z)*im) >> 64);
ull y = x * m;
return (uint)(z - y + (z < y ? m : 0));
}
};
inline constexpr ull inv64(ull a)
{
ull x = a;
while (a * x != 1) x *= 2 - a * x;
return x;
}
struct montgomery64odd
{
ull m, im, sq;
// sq = (2^64)^2 % m = (2^128 - m) % m = (-m % 2^128) % m
explicit montgomery64odd(ull m) : m(m), im(inv64(m)), sq(-u128(m) % m) {}
ull umod() const { return m; }
ull reduce(u128 x) const
{
auto t = (x + u128(m) * (-im * ull(x))) >> 64;
if (t >= m)
t -= m;
return (ull)t;
}
ull inv_reduce(i128 v) const
{ return reduce(u128(v % m + m) * sq); }
};
struct montgomery64
{
ull m, mx, imx, d, q;
uint b;
explicit montgomery64(ull m) : m(m)
{
b = countr_zero(m), mx = m >> b; // m == 2^b * mx, mx is odd
imx = inv64(mx);
d = powmod64_constexpr((mx + 1) / 2, b, mx); // 2^{-b} mod mx
u128 sq = -u128(mx) % mx; // 2^128 mod mx
q = (1 + (((sq - 1) * d) << b)) % m;
}
ull umod() const { return m; }
ull reduce(u128 x) const
{
ull p = x & MASK(b); // x mod 2^b
x = (x >> b) + p * d;
ull y = p << (64 - b);
auto t = (x + u128(mx) * (imx * (y - ull(x)))) >> (64 - b);
if (t >= m)
{
t -= m;
if (t >= m)
t -= m;
}
return (ull)t;
}
ull inv_reduce(i128 v) const
{ return reduce(u128(v % m + m) * q); }
};
}
template <class T = ll>
constexpr tuple<T, T, T> extgcd(const T &a, const T &b)
{
if (a == 0 && b == 0)
return {0, 0, 0};
// a*x1 + b*y1 == z1 ...(1)
// a*x2 + b*y2 == z2 ...(2)
T x1 = 1, y1 = 0, z1 = a;
T x2 = 0, y2 = 1, z2 = b;
while (z2 != 0)
{
// (1)' = (2)
// (2)' = (1) - q*(2)
T q = z1 / z2;
tie(x1, x2) = make_pair(x2, x1 - q * x2);
tie(y1, y2) = make_pair(y2, y1 - q * y2);
tie(z1, z2) = make_pair(z2, z1 - q * z2);
}
if (z1 < 0)
x1 = -x1, y1 = -y1, z1 = -z1;
return {z1, x1, y1};
}
template <int m>
struct static_modint
{
using mint = static_modint;
private:
uint _v;
static constexpr uint umod() { return m; }
static constexpr bool prime = internal::isprime32<m>;
public:
static constexpr int mod() { return m; }
static_modint() : _v(0) {}
template <class T>
static_modint(T v)
{
if constexpr (is_signed_v<T>)
{
ll x = (ll)(v % (ll)(umod()));
if (x < 0)
x += umod();
_v = (uint)x;
}
else if constexpr (is_unsigned_v<T>)
{
_v = (uint)(v % umod());
}
else
{
static_assert(is_signed_v<T> || is_unsigned_v<T>, "Unsupported Type");
}
}
int val() const { return (int)_v; }
mint& operator++()
{
_v++;
if (_v == umod())
_v = 0;
return *this;
}
mint& operator--()
{
if (_v == 0)
_v = umod();
_v--;
return *this;
}
mint operator++(int)
{
mint res = *this;
++*this;
return res;
}
mint operator--(int)
{
mint res = *this;
--*this;
return res;
}
mint& operator+=(const mint& rhs)
{
_v += rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint& operator-=(const mint &rhs)
{
_v -= rhs._v;
if (_v >= umod())
_v += umod();
return *this;
}
mint& operator*=(const mint &rhs)
{
ull z = _v;
z *= rhs._v;
_v = (uint)(z % umod());
return *this;
}
mint& operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(ll n) const
{
assert(n >= 0);
mint x = *this, r = 1;
while (n)
{
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const
{
if (prime)
{
assert(_v != 0);
return pow(umod() - 2);
}
else
{
auto [g, x, y] = extgcd<int>(_v, m);
assert(g == 1);
return x;
}
}
friend mint operator+(const mint &lhs, const mint &rhs)
{ return mint(lhs) += rhs; }
friend mint operator-(const mint &lhs, const mint &rhs)
{ return mint(lhs) -= rhs; }
friend mint operator*(const mint &lhs, const mint &rhs)
{ return mint(lhs) *= rhs; }
friend mint operator/(const mint &lhs, const mint &rhs)
{ return mint(lhs) /= rhs; }
friend bool operator==(const mint &lhs, const mint &rhs)
{ return lhs._v == rhs._v; }
friend bool operator!=(const mint &lhs, const mint &rhs)
{ return lhs._v != rhs._v; }
};
template <int id>
struct dynamic_modint
{
using mint = dynamic_modint;
private:
uint _v;
static internal::barrett32 bt;
static uint umod() { return bt.umod(); }
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m)
{
assert(m >= 1);
bt = internal::barrett32(m);
}
dynamic_modint() : _v(0) {}
template <class T>
dynamic_modint(T v)
{
if constexpr (is_signed_v<T>)
{
ll x = (ll)(v % (ll)(umod()));
if (x < 0)
x += umod();
_v = (uint)x;
}
else if constexpr (is_unsigned_v<T>)
{
_v = (uint)(v % umod());
}
else
{
static_assert(is_signed_v<T> || is_unsigned_v<T>, "Unsupported Type");
}
}
int val() const { return (int)_v; }
mint& operator++()
{
_v++;
if (_v == umod())
_v = 0;
return *this;
}
mint& operator--()
{
if (_v == 0)
_v = umod();
_v--;
return *this;
}
mint operator++(int)
{
mint res = *this;
++*this;
return res;
}
mint operator--(int)
{
mint res = *this;
--*this;
return res;
}
mint& operator+=(const mint& rhs)
{
_v += rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint& operator-=(const mint &rhs)
{
_v -= rhs._v;
if (_v >= umod())
_v += umod();
return *this;
}
mint& operator*=(const mint &rhs)
{
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(ll n) const
{
assert(n >= 0);
mint x = *this, r = 1;
while (n)
{
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const
{
auto [g, x, y] = extgcd<int>(_v, mod());
assert(g == 1);
return x;
}
friend mint operator+(const mint &lhs, const mint &rhs)
{ return mint(lhs) += rhs; }
friend mint operator-(const mint &lhs, const mint &rhs)
{ return mint(lhs) -= rhs; }
friend mint operator*(const mint &lhs, const mint &rhs)
{ return mint(lhs) *= rhs; }
friend mint operator/(const mint &lhs, const mint &rhs)
{ return mint(lhs) /= rhs; }
friend bool operator==(const mint &lhs, const mint &rhs)
{ return lhs._v == rhs._v; }
friend bool operator!=(const mint &lhs, const mint &rhs)
{ return lhs._v != rhs._v; }
};
template <int id>
internal::barrett32 dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
template <int m>
istream &operator>>(istream &is, static_modint<m> &x)
{
ll a;
is >> a;
x = a;
return is;
}
template <int m>
ostream &operator<<(ostream &os, const static_modint<m> &x)
{
os << x.val();
return os;
}
template <int id>
istream &operator>>(istream &is, dynamic_modint<id> &x)
{
ll a;
is >> a;
x = a;
return is;
}
template <int id>
ostream &operator<<(ostream &os, const dynamic_modint<id> &x)
{
os << x.val();
return os;
}
template <int m>
void rd1(static_modint<m> &x)
{
ll a;
fastio::rd1(a);
x = a;
}
template <int m>
void wt1(const static_modint<m> &x)
{
fastio::wt1(x.val());
}
template <int id>
void rd1(dynamic_modint<id> &x)
{
ll a;
fastio::rd1(a);
x = a;
}
template <int id>
void wt1(const dynamic_modint<id> &x)
{
fastio::wt1(x.val());
}
using mint = modint998244353;
template <ll m>
struct static_modint64
{
using mint = static_modint64;
private:
ull _v;
static constexpr ull umod() { return m; }
static constexpr bool prime = internal::isprime64<m>;
public:
static constexpr ll mod() { return m; }
static_modint64() : _v(0) {}
template <class T>
static_modint64(T v)
{
if constexpr (is_unsigned_v<T>)
{
_v = (ull)(v % umod());
}
else
{
ll x = (ll)(v % (ll)(umod()));
if (x < 0)
x += umod();
_v = (ull)x;
}
}
ll val() const { return (ll)_v; }
mint& operator++()
{
_v++;
if (_v == umod())
_v = 0;
return *this;
}
mint& operator--()
{
if (_v == 0)
_v = umod();
_v--;
return *this;
}
mint operator++(int)
{
mint res = *this;
++*this;
return res;
}
mint operator--(int)
{
mint res = *this;
--*this;
return res;
}
mint& operator+=(const mint& rhs)
{
_v += rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint& operator-=(const mint &rhs)
{
_v -= rhs._v;
if (_v >= umod())
_v += umod();
return *this;
}
mint& operator*=(const mint &rhs)
{
u128 z = _v;
z *= rhs._v;
_v = (ull)(z % umod());
return *this;
}
mint& operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(ll n) const
{
assert(n >= 0);
mint x = *this, r = 1;
while (n)
{
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const
{
if (prime)
{
assert(_v != 0);
return pow(umod() - 2);
}
else
{
auto [g, x, y] = extgcd<ll>(_v, m);
assert(g == 1);
return x;
}
}
friend mint operator+(const mint &lhs, const mint &rhs)
{ return mint(lhs) += rhs; }
friend mint operator-(const mint &lhs, const mint &rhs)
{ return mint(lhs) -= rhs; }
friend mint operator*(const mint &lhs, const mint &rhs)
{ return mint(lhs) *= rhs; }
friend mint operator/(const mint &lhs, const mint &rhs)
{ return mint(lhs) /= rhs; }
friend bool operator==(const mint &lhs, const mint &rhs)
{ return lhs._v == rhs._v; }
friend bool operator!=(const mint &lhs, const mint &rhs)
{ return lhs._v != rhs._v; }
};
template <int id>
struct dynamic_modint64_odd
{
using mint = dynamic_modint64_odd;
private:
ull _v; // montgomery expression
static internal::montgomery64odd mg;
static ull umod() { return mg.umod(); }
public:
static ll mod() { return (ll)(mg.umod()); }
static void set_mod(ll m)
{
assert(m >= 1 && m % 2 == 1);
mg = internal::montgomery64odd(m);
}
dynamic_modint64_odd() : _v(0) {}
dynamic_modint64_odd(i128 v)
{ _v = mg.inv_reduce(v); }
ll val() const { return (ll)mg.reduce(_v); }
mint& operator++()
{
_v++;
if (_v == umod())
_v = 0;
return *this;
}
mint& operator--()
{
if (_v == 0)
_v = umod();
_v--;
return *this;
}
mint operator++(int)
{
mint res = *this;
++*this;
return res;
}
mint operator--(int)
{
mint res = *this;
--*this;
return res;
}
mint& operator+=(const mint& rhs)
{
_v += rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint& operator-=(const mint &rhs)
{
_v -= rhs._v;
if (_v >= umod())
_v += umod();
return *this;
}
mint& operator*=(const mint &rhs)
{
_v = mg.reduce(u128(_v) * rhs._v);
return *this;
}
mint& operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(ll n) const
{
assert(n >= 0);
mint x = *this, r = 1;
while (n)
{
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const
{
auto [g, x, y] = extgcd<ll>(val(), mod());
assert(g == 1);
return x;
}
friend mint operator+(const mint &lhs, const mint &rhs)
{ return mint(lhs) += rhs; }
friend mint operator-(const mint &lhs, const mint &rhs)
{ return mint(lhs) -= rhs; }
friend mint operator*(const mint &lhs, const mint &rhs)
{ return mint(lhs) *= rhs; }
friend mint operator/(const mint &lhs, const mint &rhs)
{ return mint(lhs) /= rhs; }
friend bool operator==(const mint &lhs, const mint &rhs)
{ return lhs._v == rhs._v; }
friend bool operator!=(const mint &lhs, const mint &rhs)
{ return lhs._v != rhs._v; }
};
template <int id>
internal::montgomery64odd dynamic_modint64_odd<id>::mg((1LL << 61) - 1);
template <int id>
struct dynamic_modint64
{
using mint = dynamic_modint64;
private:
ull _v; // montgomery expression
static internal::montgomery64 mg;
static ull umod() { return mg.umod(); }
public:
static ll mod() { return (ll)(mg.umod()); }
static void set_mod(ll m)
{
assert(m >= 1);
mg = internal::montgomery64(m);
}
dynamic_modint64() : _v(0) {}
dynamic_modint64(i128 v)
{ _v = mg.inv_reduce(v); }
ll val() const { return (ll)mg.reduce(_v); }
mint& operator++()
{
_v++;
if (_v == umod())
_v = 0;
return *this;
}
mint& operator--()
{
if (_v == 0)
_v = umod();
_v--;
return *this;
}
mint operator++(int)
{
mint res = *this;
++*this;
return res;
}
mint operator--(int)
{
mint res = *this;
--*this;
return res;
}
mint& operator+=(const mint& rhs)
{
_v += rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint& operator-=(const mint &rhs)
{
_v -= rhs._v;
if (_v >= umod())
_v += umod();
return *this;
}
mint& operator*=(const mint &rhs)
{
_v = mg.reduce(u128(_v) * rhs._v);
return *this;
}
mint& operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(ll n) const
{
assert(n >= 0);
mint x = *this, r = 1;
while (n)
{
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const
{
auto [g, x, y] = extgcd<ll>(val(), mod());
assert(g == 1);
return x;
}
friend mint operator+(const mint &lhs, const mint &rhs)
{ return mint(lhs) += rhs; }
friend mint operator-(const mint &lhs, const mint &rhs)
{ return mint(lhs) -= rhs; }
friend mint operator*(const mint &lhs, const mint &rhs)
{ return mint(lhs) *= rhs; }
friend mint operator/(const mint &lhs, const mint &rhs)
{ return mint(lhs) /= rhs; }
friend bool operator==(const mint &lhs, const mint &rhs)
{ return lhs._v == rhs._v; }
friend bool operator!=(const mint &lhs, const mint &rhs)
{ return lhs._v != rhs._v; }
};
template <int id>
internal::montgomery64 dynamic_modint64<id>::mg((1LL << 61) - 1);
using modint61 = static_modint64<(1LL << 61) - 1>;
using modint64_odd = dynamic_modint64_odd<-1>;
using modint64 = dynamic_modint64<-1>;
template <int m>
istream &operator>>(istream &is, static_modint64<m> &x)
{
ll a;
is >> a;
x = a;
return is;
}
template <int m>
ostream &operator<<(ostream &os, const static_modint64<m> &x)
{
os << x.val();
return os;
}
template <int id>
istream &operator>>(istream &is, dynamic_modint64_odd<id> &x)
{
ll a;
is >> a;
x = a;
return is;
}
template <int id>
ostream &operator<<(ostream &os, const dynamic_modint64_odd<id> &x)
{
os << x.val();
return os;
}
template <int id>
istream &operator>>(istream &is, dynamic_modint64<id> &x)
{
ll a;
is >> a;
x = a;
return is;
}
template <int id>
ostream &operator<<(ostream &os, const dynamic_modint64<id> &x)
{
os << x.val();
return os;
}
template <int m>
void rd1(static_modint64<m> &x)
{
ll a;
fastio::rd1(a);
x = a;
}
template <int m>
void wt1(const static_modint64<m> &x)
{
fastio::wt1(x.val());
}
template <int id>
void rd1(dynamic_modint64_odd<id> &x)
{
ll a;
fastio::rd1(a);
x = a;
}
template <int id>
void wt1(const dynamic_modint64_odd<id> &x)
{
fastio::wt1(x.val());
}
template <int id>
void rd1(dynamic_modint64<id> &x)
{
ll a;
fastio::rd1(a);
x = a;
}
template <int id>
void wt1(const dynamic_modint64<id> &x)
{
fastio::wt1(x.val());
}
template <class P>
struct PrimePower
{
P p;
int e;
P pe;
PrimePower() {}
PrimePower(P p, int e = 1) : p(p), e(e), pe(ipow(p, e)) {}
PrimePower(P p, int e, P pe) : p(p), e(e), pe(pe) {}
template <class P2>
PrimePower(const PrimePower<P2> &pp) : p(pp.p), e(pp.e), pe(pp.pe) {}
};
#ifdef LOCAL
CPP_DUMP_DEFINE_EXPORT_OBJECT(PrimePower<int>, p, e, pe);
CPP_DUMP_DEFINE_EXPORT_OBJECT(PrimePower<ll>, p, e, pe);
#endif
tuple<int, ll, ll> ord_pow_div(ll n, ll m)
{
assert(m >= 2);
if (m == 2)
{
int e = countr_zero(n);
return {e, 1LL << e, n >> e};
}
if (n % m != 0)
return {0, 1, n};
n /= m;
if (n % m != 0)
return {1, m, n};
n /= m;
ll m2 = m * m;
auto [f, m2f, nn] = ord_pow_div(n, m2);
int e = 2 + 2 * f;
ll me = m2f * m2;
if (nn % m == 0)
e++, me *= m, nn /= m;
return {e, me, nn};
}
namespace internal
{
template <class mint>
bool is_prime_impl(ll n, cauto &bases)
{
if (n <= 1)
return false;
if (n == 2 || n == 7 || n == 61)
return true;
if (n % 2 == 0)
return false;
ll d = (n - 1) >> countr_zero(n - 1);
mint::set_mod(n);
for (ll a : bases)
{
ll t = d;
mint y = mint(a).pow(t);
while (t != n - 1 && y != 1 && y != n - 1)
{
y *= y;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0)
return false;
}
return true;
}
}; // namespace internal
bool is_prime(ll n)
{
static constexpr array<ll, 3> bases32 = {2, 7, 61};
static constexpr array<ll, 7> bases64 = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
if (n <= INT_MAX)
{
using mint = dynamic_modint<INT_MIN>;
return internal::is_prime_impl<mint>(n, bases32);
}
else
{
using mint = dynamic_modint64_odd<INT_MIN>;
return internal::is_prime_impl<mint>(n, bases64);
}
}
namespace internal
{
template <class mint>
ll get_prime_factor_impl(ll n)
{
mint::set_mod(n);
int m = pow(n, .125);
mt19937 _mt;
while (true)
{
int c = 1 + _mt() % 100;
mint x = 2, y = 2, prod = 1;
ll g = 1;
while (g == 1)
{
repi(i, m)
{
x = x * x + c;
y = y * y + c, y = y * y + c;
prod *= x - y;
}
g = gcd(prod.val(), n);
}
if (g == n)
continue;
if (is_prime(g))
return g;
else if (is_prime(n / g))
return n / g;
else
return get_prime_factor_impl<mint>(g);
}
}
ll get_prime_factor(ll n)
{
if (n <= INT_MAX)
{
using mint = dynamic_modint<INT_MIN>;
return get_prime_factor_impl<mint>(n);
}
else
{
using mint = dynamic_modint64_odd<INT_MIN>;
return get_prime_factor_impl<mint>(n);
}
}
}; // namespace internal
vc<PrimePower<ll>> factorize(ll n)
{
vc<PrimePower<ll>> res;
repi(p, 2, 100)
{
if (n % p == 0)
{
auto [e, pe, nn] = ord_pow_div(n, p);
res.emplace_back(PrimePower<ll>(p, e, pe));
n = nn;
}
}
while (n > 1)
{
if (is_prime(n))
{
res.emplace_back(n);
break;
}
ll p = internal::get_prime_factor(n);
auto [e, pe, nn] = ord_pow_div(n, p);
res.emplace_back(PrimePower<ll>(p, e, pe));
n = nn;
}
sort(ALL(res), [&](cauto &pp1, cauto &pp2)
{ return pp1.p < pp2.p; });
return res;
}
template <class S_, auto op_, auto e_>
struct Monoid
{
using S = S_;
static constexpr auto op = op_;
static constexpr auto e = e_;
};
template <class S_, auto op_, auto e_, auto inv_>
struct Group
{
using S = S_;
static constexpr auto op = op_;
static constexpr auto e = e_;
static constexpr auto inv = inv_;
};
template <class S_, auto add_, auto e0_, auto mul_, auto e1_>
struct SemiRing
{
using S = S_;
static constexpr auto add = add_;
static constexpr auto e0 = e0_;
static constexpr auto mul = mul_;
static constexpr auto e1 = e1_;
};
template <class S_, auto add_, auto e0_, auto minus_, auto mul_, auto e1_>
struct Ring
{
using S = S_;
static constexpr auto add = add_;
static constexpr auto e0 = e0_;
static constexpr auto minus = minus_;
static constexpr auto mul = mul_;
static constexpr auto e1 = e1_;
};
template <class SR>
using MonoidOfSemiRingAdd = Monoid<typename SR::S, SR::add, SR::e0>;
template <class SR>
using MonoidOfSemiRingMul = Monoid<typename SR::S, SR::mul, SR::e1>;
template <class R>
using GroupOfRingAdd = Group<typename R::S, R::add, R::e0, R::minus>;
template <class T>
struct MonoidAdd
{
using S = T;
static constexpr S op(S a, S b) { return a + b; }
static constexpr S e() { return 0; }
};
template <class T>
struct MonoidMul
{
using S = T;
static constexpr S op(S a, S b) { return a * b; }
static constexpr S e() { return 1; }
};
template <class T, const T infty = INF>
struct MonoidMin
{
using S = T;
static constexpr S op(S a, S b) { return min(a, b); }
static constexpr S e() { return infty; }
};
template <class T, const T infty = INF>
struct MonoidMax
{
using S = T;
static constexpr S op(S a, S b) { return max(a, b); }
static constexpr S e() { return -infty; }
};
template <class T>
struct GroupAddSub
{
using S = T;
static constexpr S op(S a, S b) { return a + b; }
static constexpr S e() { return 0; }
static constexpr S inv(S a) { return -a; }
};
template <class T>
struct GroupMulDiv
{
using S = T;
static constexpr S op(S a, S b) { return a * b; }
static constexpr S e() { return 1; }
static constexpr S inv(S a) { return 1 / a; }
};
template <class T, const T infty = INF>
struct SemiRingMinPlus
{
using S = T;
static constexpr S add(S a, S b) { return min(a, b); }
static constexpr S e0() { return infty; }
static constexpr S mul(S a, S b) { return a + b; }
static constexpr S e1() { return 0; }
};
template <class T, const T infty = INF>
struct SemiRingMaxPlus
{
using S = T;
static constexpr S add(S a, S b) { return max(a, b); }
static constexpr S e0() { return -infty; }
static constexpr S mul(S a, S b) { return a + b; }
static constexpr S e1() { return 0; }
};
template <class T>
struct RingAddSubMul
{
using S = T;
static constexpr S add(S a, S b) { return a + b; }
static constexpr S minus(S a) { return -a; }
static constexpr S e0() { return 0; }
static constexpr S mul(S a, S b) { return a * b; }
static constexpr S e1() { return 1; }
};
template <class M>
vc<typename M::S> zeta_supset(const vc<typename M::S> &a)
{
if (a.empty())
return {};
assert(has_single_bit(a.size()));
const int n = countr_zero(a.size());
auto b = a;
repi(i, n) repi(s, 1 << n)
{
if (!btest(s, i))
{
int t = s;
bset(t, i);
b[s] = M::op(b[s], b[t]);
}
}
return b;
}
void init() {}
void main2()
{
LL(T, M);
auto facM = factorize(M);
ll K = facM.size();
rep(_, T)
{
LL(N, B, C, D);
VEC(ll, N, A);
vc<mint> W(N);
W.at(0) = B;
rep(i, 1, N) W.at(i) = C * W.at(i - 1) + D;
dump(W);
vc<mint> f(1 << K, 1);
rep(i, N)
{
if (M % A.at(i) != 0)
continue;
ll s = 0;
rep(j, K)
{
ll e2 = get<0>(ord_pow_div(A.at(i), facM.at(j).p));
if (e2 == facM.at(j).e)
bset(s, j, 0);
else
bset(s, j, 1);
}
f.at(s) *= 1 + W.at(i);
dump(i, A.at(i), 1 + W.at(i), s | cp::bin(K));
}
dump(f);
auto g = zeta_supset<MonoidMul<mint>>(f);
dump(g);
mint ans = 0;
rep(s, 1 << K)
{
ans += ipow(-1, popcount(s)) * g.at(s);
}
if (M == 1)
ans--;
PRINT(ans);
}
}
void test()
{
/*
local(
rep(testcase, 100000)
{
cout << endl;
dump(testcase);
// ----- generate cases -----
ll N = 1 + rand() % 5;
vl A(N);
rep(i, N) A.at(i) = 1 + rand() % 10;
// --------------------------
// ------ check output ------
#define INPUT A
auto god = naive(INPUT);
auto ans = solve(INPUT);
if (god != ans)
{
dump(INPUT);
dump(god, ans);
exit(0);
}
// --------------------------
}
dump("ok");
);
//*/
}
int main()
{
cauto CERR = [](string val, string color)
{
string s = "\033[" + color + "m" + val + "\033[m";
#ifdef LOCAL
cerr << s;
#endif
/*
cerr << val;
//*/
};
#if defined FAST_IO and not defined LOCAL
CERR("\n[FAST_IO]\n\n", "32");
#endif
#if defined FAST_CIO and not defined LOCAL
CERR("\n[FAST_CIO]\n\n", "32");
cin.tie(0);
ios::sync_with_stdio(false);
#endif
cout << fixed << setprecision(20);
test();
init();
#if defined AOJ_TESTCASE or (defined LOCAL and defined SINGLE_TESTCASE)
CERR("\n[AOJ_TESTCASE]\n\n", "35");
while (true)
{
dump("new testcase");
main2();
}
#elif defined SINGLE_TESTCASE
CERR("\n[SINGLE_TESTCASE]\n\n", "36");
main2();
#elif defined MULTI_TESTCASE
CERR("\n[MULTI_TESTCASE]\n\n", "33");
dump("T");
IN(uint, T);
while (T--)
{
dump("new testcase");
main2();
}
#endif
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0