結果

問題 No.3027 f-列とh-列
ユーザー ococonomy1
提出日時 2025-02-21 21:29:25
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 5,716 bytes
コンパイル時間 2,220 ms
コンパイル使用メモリ 198,608 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2025-02-21 21:29:42
合計ジャッジ時間 3,117 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

//#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pli = pair<ll,int>;
#define TEST cerr << "TEST" << endl
#define AMARI 998244353
//#define AMARI 1000000007
#define el '\n'
#define El '\n'
#define YESNO(x) ((x) ? "Yes" : "No")
#define VEC_UNIQ(v) sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end());
#define REV_PRIORITY_QUEUE(tp) priority_queue<tp,vector<tp>,greater<tp>>
class ococo_combination{
private:
long long N,P;
vector<long long> kaizyou,gyakugen,gyakugen_kaizyou;
long long pn = -1,pk = -1;
ll sum_ans = 0;
public:
//調 1e7 TL/ML
ococo_combination(long long p = 998244353,long long n = 10000000){
n++;
N = n; P = p;
kaizyou.resize(n);
gyakugen.resize(n);
gyakugen_kaizyou.resize(n);
kaizyou[0] = kaizyou[1] = 1;
gyakugen[0] = gyakugen[1] = 1;
gyakugen_kaizyou[0] = gyakugen_kaizyou[1] = 1;
for(int i = 2; i < n; i++){
kaizyou[i] = kaizyou[i - 1] * i % p;
gyakugen[i] = p - gyakugen[p % i] * (p / i) % p;
gyakugen_kaizyou[i] = gyakugen_kaizyou[i - 1] * gyakugen[i] % p;
}
}
long long binom(int n,int k){
if(n < k || n < 0 || k < 0)return 0LL;
long long ans = kaizyou[n];
long long temp = gyakugen_kaizyou[n - k];
temp *= gyakugen_kaizyou[k]; temp %= P;
ans *= temp; ans %= P;
return ans;
}
//1 * 2 * ... * n(mod P) n N
long long factorial(int n){
assert(n < N);
if(n < 0)return 0LL;
return kaizyou[n];
}
//binom(n,0) + binom(n,1) + ... + binom(n,k)
//1 O(K)2 (pn,pk) O(abs(n - pn) + abs(k - pk))
//Mo N*sqrt(Q) O(1)
// P >= 3 (2)
// verify
long long sum(int n,int k){
if(pn == -1 || abs(n - pn) + abs(k - pk) >= k){
sum_ans = 0;
for(int i = 0; i <= k; i++){
sum_ans += binom(n,i);
if(sum_ans >= P)sum_ans -= P;
}
pn = n; pk = k;
return sum_ans;
}
while(n > pn){
sum_ans = 2LL * sum_ans - binom(pn,pk);
if(sum_ans < 0)sum_ans += P;
if(sum_ans >= P)sum_ans -= P;
pn++;
}
while(n < pn){
ll temp = sum_ans + binom(pn - 1,pk);
if(temp % 2)temp += P;
sum_ans = temp / 2;
pn--;
}
while(k < pk){
sum_ans -= binom(pn,pk);
if(sum_ans < 0)sum_ans += P;
pk--;
}
while(k > pk){
pk++;
sum_ans += binom(pn,pk);
if(sum_ans >= P)sum_ans -= P;
}
return sum_ans;
}
//nn 2*N
long long catalan(int n){
ll ans = kaizyou[2 * n];
ans *= gyakugen_kaizyou[n + 1]; ans %= P;
ans *= gyakugen_kaizyou[n]; ans %= P;
return ans;
}
};
#define MULTI_TEST_CASE false
void solve(void){
//
//
//
//
//
//g++ -D_GLIBCXX_DEBUG -O2 a.cpp -o o
int n;
cin >> n;
vector<ll> a(n + 1);
for(int i = 0; i <= n; i++){
cin >> a[i];
}
ococo_combination oc(998244353,100);
vector<ll> ans(n + 1,0LL);
for(int i = 0; i <= n; i++){
int cnt = 0;
for(int j = i; j <= n; j++){
//if(i == 0 && j == 0)cerr << a[i] << ' ' << oc.binom(n - i,cnt) << el;
ans[j] += (cnt % 2 == 0 ? 1LL : -1LL) * a[i] * oc.binom(n - i,cnt);
cnt++;
}
//cerr << n - i << el;
//for(int j = 0; j <= n; j++)cerr << ans[j] << ' '; cerr << el;
}
for(int i = 0; i <= n; i++){
cout << ans[i] << ' ';
}
cout << el;
return;
}
void calc(void){
return;
}
signed main(void){
cin.tie(nullptr);
ios::sync_with_stdio(false);
calc();
int t = 1;
if(MULTI_TEST_CASE)cin >> t;
while(t--){
solve();
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0