結果
| 問題 |
No.3028 No.9999
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-02-21 22:36:08 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 2,068 bytes |
| コンパイル時間 | 14,580 ms |
| コンパイル使用メモリ | 395,064 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2025-02-21 22:36:26 |
| 合計ジャッジ時間 | 15,863 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 RE * 1 |
ソースコード
use proconio::input;
fn main() {
input! {
n: usize,
}
println!("{}", solve(n));
}
fn solve(n: usize) -> usize {
let factors = prime_factorization(n);
let carmichael = factors.iter().fold(1_usize, |lcm, &(p, e)| {
calc_lcm(lcm, p.pow(e as u32 - 1) * (p - 1))
});
*find_divisors(carmichael)
.iter()
.find(|&&d| pow_mod(10, d, n) == 1)
.unwrap()
}
/// Performs prime factorization of `n`.
///
/// The result of the prime factorization is returned as a
/// list of prime factor and exponent pairs.
pub fn prime_factorization(n: usize) -> Vec<(usize, usize)> {
assert_ne!(n, 0, "`n` must be at least 1.");
let mut factors = vec![];
let mut t = n;
for p in 2.. {
if p * p > t {
break;
}
let mut e = 0;
while t % p == 0 {
t /= p;
e += 1;
}
if e != 0 {
factors.push((p, e));
}
}
if t != 1 {
factors.push((t, 1));
}
factors
}
/// Creates a sequence consisting of the divisors of `n`.
pub fn find_divisors(n: usize) -> Vec<usize> {
assert_ne!(n, 0, "`n` must be at least 1.");
let mut divisors = vec![];
for i in (1..).take_while(|&i| i <= n / i) {
if n % i == 0 {
divisors.push(i);
if n / i != i {
divisors.push(n / i);
}
}
}
divisors.sort_unstable();
divisors
}
/// Calculate the remainder of `exp` power of `base` divided by `m`.
pub fn pow_mod(base: usize, exp: usize, m: usize) -> usize {
let mut ret = 1 % m;
let mut mul = base % m;
let mut t = exp;
while t != 0 {
if t & 1 == 1 {
ret = ret * mul % m;
}
mul = mul * mul % m;
t >>= 1;
}
ret
}
fn calc_gcd(a: usize, b: usize) -> usize {
let (mut a, mut b) = (a, b);
while b != 0 {
let r = a % b;
a = b;
b = r;
}
a
}
fn calc_lcm(a: usize, b: usize) -> usize {
a / calc_gcd(a, b) * b
}