結果

問題 No.3028 No.9999
ユーザー atcoder8
提出日時 2025-02-21 22:39:28
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 2 ms / 4,000 ms
コード長 2,109 bytes
コンパイル時間 16,508 ms
コンパイル使用メモリ 393,696 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2025-02-21 22:39:46
合計ジャッジ時間 14,640 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

use proconio::input;
fn main() {
input! {
n: usize,
}
println!("{}", solve(n));
}
fn solve(n: usize) -> usize {
if n == 1 {
return 1;
}
let factors = prime_factorization(n);
let carmichael = factors.iter().fold(1_usize, |lcm, &(p, e)| {
calc_lcm(lcm, p.pow(e as u32 - 1) * (p - 1))
});
*find_divisors(carmichael)
.iter()
.find(|&&d| pow_mod(10, d, n) == 1)
.unwrap()
}
/// Creates a sequence consisting of the divisors of `n`.
pub fn find_divisors(n: usize) -> Vec<usize> {
assert_ne!(n, 0, "`n` must be at least 1.");
let mut divisors = vec![];
for i in (1..).take_while(|&i| i <= n / i) {
if n % i == 0 {
divisors.push(i);
if n / i != i {
divisors.push(n / i);
}
}
}
divisors.sort_unstable();
divisors
}
/// Performs prime factorization of `n`.
///
/// The result of the prime factorization is returned as a
/// list of prime factor and exponent pairs.
pub fn prime_factorization(n: usize) -> Vec<(usize, usize)> {
assert_ne!(n, 0, "`n` must be at least 1.");
let mut factors = vec![];
let mut t = n;
for p in 2.. {
if p * p > t {
break;
}
let mut e = 0;
while t % p == 0 {
t /= p;
e += 1;
}
if e != 0 {
factors.push((p, e));
}
}
if t != 1 {
factors.push((t, 1));
}
factors
}
/// Calculate the remainder of `exp` power of `base` divided by `m`.
pub fn pow_mod(base: usize, exp: usize, m: usize) -> usize {
let mut ret = 1 % m;
let mut mul = base % m;
let mut t = exp;
while t != 0 {
if t & 1 == 1 {
ret = ret * mul % m;
}
mul = mul * mul % m;
t >>= 1;
}
ret
}
fn calc_gcd(a: usize, b: usize) -> usize {
let (mut a, mut b) = (a, b);
while b != 0 {
let r = a % b;
a = b;
b = r;
}
a
}
fn calc_lcm(a: usize, b: usize) -> usize {
a / calc_gcd(a, b) * b
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0