結果

問題 No.2061 XOR Sort
ユーザー eQe
提出日時 2025-02-24 11:50:01
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 414 ms / 2,000 ms
コード長 6,594 bytes
コンパイル時間 5,853 ms
コンパイル使用メモリ 333,536 KB
実行使用メモリ 92,544 KB
最終ジャッジ日時 2025-02-24 11:50:15
合計ジャッジ時間 12,001 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
namespace my{
using ml=atcoder::modint998244353;
auto&operator>>(istream&i,ml&x){int t;i>>t;x=t;return i;}
auto&operator<<(ostream&o,const ml&x){return o<<(int)x.val();}
#define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__)
#define VL(n,...) vec<ll>__VA_ARGS__;setsize({n},__VA_ARGS__);lin(__VA_ARGS__)
#define FO(n) for(ll ij=n;ij-->0;)
#define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step)
#define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__))
#define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a)
#define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{
void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);}
using ll=long long;
using ull=unsigned long long;
using ulll=__uint128_t;
using lll=__int128_t;
istream&operator>>(istream&i,ulll&x){ull t;i>>t;x=t;return i;}
ostream&operator<<(ostream&o,const ulll&x){return(x<10?o:o<<x/10)<<ll(x%10);}
istream&operator>>(istream&i,lll&x){ll t;i>>t;x=t;return i;}
ostream&operator<<(ostream&o,const lll&x){return o<<string(x<0,'-')<<ulll(x>0?x:-x);}
constexpr auto range(bool s,auto...a){array<ll,3>r{0,0,1};ll I=0;((r[I++]=a),...);if(!s&&I==1)swap(r[0],r[1]);r[0]-=s;if(s)r[2]*=-1;return r;}
constexpr char newline=10;
constexpr char space=32;
template<class T>constexpr ll bit_sizeof(){return sizeof(T)*CHAR_BIT;}
lll pow(lll x,ll n){assert(n>=0);lll r=1;while(n)n&1?r*=x:r,x*=x,n>>=1;return r;}
constexpr auto at2(auto x,auto i){return x>>i&1;}

template<class A,class B>struct pair{
  A a;B b;
  pair()=default;
  pair(A a,B b):a(a),b(b){}
  pair(const std::pair<A,B>&p):a(p.first),b(p.second){}
  auto operator<=>(const pair&)const=default;
  pair operator+(const pair&p)const{return{a+p.a,b+p.b};}
  friend istream&operator>>(istream&i,pair&p){return i>>p.a>>p.b;}
  friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<space<<p.b;}
};

template<class T>struct queue:std::queue<T>{
  queue(const initializer_list<T>&a={}){fe(a,e)this->emplace(e);}
  queue(const vector<T>&a){fe(a,e)this->emplace(e);}
  ll size()const{return std::queue<T>::size();}
  T pop(){T r=this->front();std::queue<T>::pop();return r;}
  T sum()const{T r{};fe(*this,e)r+=e;return r;}
  friend ostream&operator<<(ostream&o,queue q){while(q.size())o<<q.pop()<<string(q.size()>0,space);return o;}
};

template<ll k>auto pack_kth(const auto&...a){return get<k>(make_tuple(a...));}
template<class T,ll n>auto pack_slice(const auto&...a){return[&]<size_t...I>(index_sequence<I...>){return array<T,n>{get<I>(forward_as_tuple(a...))...};}(make_index_sequence<n>{});}

template<class V>concept vectorial=is_base_of_v<vector<typename V::value_type>,V>;
template<class T>struct vec_attr{using core_type=T;static constexpr int rank=0;};
template<vectorial V>struct vec_attr<V>{using core_type=typename vec_attr<typename V::value_type>::core_type;static constexpr int rank=vec_attr<typename V::value_type>::rank+1;};
template<class T>using core_t=vec_attr<T>::core_type;
template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;}
template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<string(&e!=&v.back(),vectorial<V>?newline:space);return o;}

template<class V>struct vec;
template<ll rank,class T>struct tensor_helper{using type=vec<typename tensor_helper<rank-1,T>::type>;};
template<class T>struct tensor_helper<0,T>{using type=T;};
template<ll rank,class T>using tensor=typename tensor_helper<rank,T>::type;

template<class V>struct vec:vector<V>{
  using vector<V>::vector;
  vec(const vector<V>&v){vector<V>::operator=(v);}

  template<class...A>requires(sizeof...(A)>=3)vec(A...a){const ll n=sizeof...(a)-1;auto t=pack_slice<ll,n>(a...);ll s[n];fo(i,n)s[i]=t[i];*this=make_vec(s,pack_kth<n>(a...));}
  template<class T,ll n,ll i=0>static auto make_vec(const ll(&s)[n],T x){if constexpr(i==n-1)return vec<T>(s[i],x);else{auto X=make_vec<T,n,i+1>(s,x);return vec<decltype(X)>(s[i],X);}}

  vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;}
  vec operator^(const vec&u)const{return vec{*this}^=u;}
  vec&operator+=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]+=u[i];return v;}
  vec&operator-=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]-=u[i];return v;}
  vec operator+(const vec&u)const{return vec{*this}+=u;}
  vec operator-(const vec&u)const{return vec{*this}-=u;}
  vec&operator++(){fe(*this,e)++e;return*this;}
  vec&operator--(){fe(*this,e)--e;return*this;}
  vec operator-()const{vec v=*this;fe(v,e)e=-e;return v;}

  vec&operator%=(auto M){vec&v=*this;fe(v,e)e%=M;return v;}
  vec operator%(auto M)const{return vec{*this}%=M;}

  ll size()const{return vector<V>::size();}

  auto scan(const auto&f)const{pair<core_t<V>,bool>r{};fe(*this,e)if constexpr(!vectorial<V>)r.b?f(r.a,e),r:r={e,1};else if(auto s=e.scan(f);s.b)r.b?f(r.a,s.a),r:r=s;return r;}
  auto sum()const{return scan([](auto&a,const auto&b){a+=b;}).a;}
};
template<class...A>requires(sizeof...(A)>=2)vec(A...a)->vec<tensor<sizeof...(a)-2,remove_reference_t<decltype(get<sizeof...(a)-1>(declval<tuple<A...>>()))>>>;
vec(ll)->vec<ll>;

template<ll n,class...A>void setsize(const ll(&l)[n],A&...a){((a=vec<void*>::make_vec(l,core_t<A>{})),...);}

void lin(auto&...a){(cin>>...>>a);}

template<unsigned_integral T,ll B=bit_sizeof<T>()>struct msb_first_binary_trie{
  struct node{
    ll elem_count;
    array<node*,2>child;
    node():elem_count(),child{nullptr,nullptr}{}
  };

  using node_ptr=node*;
  node_ptr r;
  msb_first_binary_trie(const vec<ll>&a={}):r(nullptr){fe(a,e)emplace(e);}

  node_ptr root()const{return r;}
  ll size()const{return r?r->elem_count:0;}
  ll size(node_ptr p)const{return p?p->elem_count:0;}

  node_ptr inner_emplace(T x,node_ptr p,ll b=B-1){
    if(!p)p=new node;
    p->elem_count++;
    if(b<0)return p;
    bool f=at2(x,b);
    p->child[f]=inner_emplace(x,p->child[f],b-1);
    return p;
  }
  void emplace(T x){r=inner_emplace(x,r);}
};

void pp(auto&&...a){ll n=sizeof...(a);((cout<<a<<string(--n>0,space)),...);cout<<newline;}
single_testcase
void solve(){
  LL(N);
  VL(N,a);

  constexpr ll B=bit_sizeof<uint32_t>();
  msb_first_binary_trie<uint32_t>mbt(a);
  queue<pair<msb_first_binary_trie<uint32_t>::node_ptr,ll>>q{{mbt.root(),0}};

  vec<ll>is_branching(B);
  while(q.size()){
    auto[p,d]=q.pop();
    is_branching[d]|=(p->child[0]&&p->child[1]);
    fe(p->child,e)if(e)q.emplace(e,d+1);
  }
  pp(ml(2).pow(is_branching.sum()));
}}
0