結果
問題 |
No.3041 非対称じゃんけん
|
ユーザー |
|
提出日時 | 2025-02-28 21:45:34 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,729 bytes |
コンパイル時間 | 3,840 ms |
コンパイル使用メモリ | 286,036 KB |
実行使用メモリ | 8,232 KB |
最終ジャッジ日時 | 2025-02-28 21:46:09 |
合計ジャッジ時間 | 21,317 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 27 TLE * 3 |
ソースコード
// #include <bits/allocator.h> // Temp fix for gcc13 global pragma // #pragma GCC target("avx2,bmi2,popcnt,lzcnt") // #pragma GCC optimize("O3,unroll-loops") #include <bits/stdc++.h> // #include <x86intrin.h> using namespace std; #if __cplusplus >= 202002L using namespace numbers; #endif #ifdef LOCAL #include "Debug.h" #else #define debug_endl() 42 #define debug(...) 42 #define debug2(...) 42 #define debugbin(...) 42 #endif struct fast_fourier_transform_wrapper{ using CD = complex<double>; using CLD = complex<long double>; // i \in [2^k, 2^{k+1}) holds w_{2^k+1}^{i-2^k} static vector<CD> root; static vector<CLD> root_ld; static void adjust_root(int n){ if(root.empty()) root = {1, 1}, root_ld = {1, 1}; for(auto k = (int)root.size(); k < n; k <<= 1){ root.resize(n), root_ld.resize(n); auto theta = polar(1.0L, acosl(-1.0L) / k); for(auto i = k; i < k << 1; ++ i) root[i] = root_ld[i] = i & 1 ? root_ld[i >> 1] * theta : root_ld[i >> 1]; } } // O(n * log(n)) static void transform(int n, CD *p, bool invert = false){ assert(n && __builtin_popcount(n) == 1); for(auto i = 1, j = 0; i < n; ++ i){ int bit = n >> 1; for(; j & bit; bit >>= 1) j ^= bit; j ^= bit; if(i < j) swap(p[i], p[j]); } adjust_root(n); for(auto len = 1; len < n; len <<= 1) for(auto i = 0; i < n; i += len << 1) for(auto j = 0; j < len; ++ j){ auto x = (double *)&root[j + len], y = (double *)&p[i + j + len]; CD z(x[0] * y[0] - x[1] * y[1], x[0] * y[1] + x[1] * y[0]); p[len + i + j] = p[i + j] - z, p[i + j] += z; } if(invert){ reverse(p + 1, p + n); auto inv_n = 1.0l / n; for(auto i = 0; i < n; ++ i) p[i] *= inv_n; } } // O(n * log(n)) static void transform(vector<CD> &p, bool invert = false){ transform((int)p.size(), p.data(), invert); } static vector<CD> buffer1, buffer2; // O(n * m) template<class T> static vector<T> convolute_naive(const vector<T> &p, const vector<T> &q){ vector<T> res(max((int)p.size() + (int)q.size() - 1, 0)); for(auto i = 0; i < (int)p.size(); ++ i) for(auto j = 0; j < (int)q.size(); ++ j) res[i + j] += p[i] * q[j]; return res; } // Safe for sum(p[i]^2 + q[i]^2) lg2(n) < 9e14 // O(n * log(n)) template<class T> static vector<T> convolute(const vector<T> &p, const vector<T> &q){ if(min(p.size(), q.size()) < 60) return convolute_naive(p, q); int n = 1 << __lg((int)p.size() + (int)q.size() - 1) + 1; buffer1.assign(n, 0); for(auto i = 0; i < (int)p.size(); ++ i) buffer1[i].real(p[i]); for(auto i = 0; i < (int)q.size(); ++ i) buffer1[i].imag(q[i]); transform(buffer1); for(auto &x: buffer1) x *= x; buffer2.assign(n, 0); for(auto i = 0; i < n; ++ i) buffer2[i] = buffer1[i] - conj(buffer1[-i & n - 1]); transform(buffer2, true); vector<T> res((int)p.size() + (int)q.size() - 1); for(auto i = 0; i < (int)res.size(); ++ i) res[i] = is_integral_v<T> ? llround(buffer2[i].imag() / 4) : buffer2[i].imag() / 4; return res; } // O(n * log(n)) static vector<CD> convolute_complex(const vector<CD> &p, const vector<CD> &q){ if(min(p.size(), q.size()) < 60) return convolute_naive(p, q); int n = 1 << __lg((int)p.size() + (int)q.size() - 1) + 1; buffer1 = p, buffer2 = q; buffer1.resize(n), buffer2.resize(n); transform(buffer1), transform(buffer2); for(auto i = 0; i < n; ++ i) buffer1[i] *= buffer2[i]; transform(buffer1, true); return {buffer1.begin(), buffer1.begin() + ((int)p.size() + (int)q.size() - 1)}; } // Safe for 64-bit integer range // O(n * log(n)) template<class T> static vector<T> convolute_splitting(const vector<T> &p, const vector<T> &q){ if(min(p.size(), q.size()) < 80) return convolute_naive(p, q); int n = 1 << __lg((int)p.size() + (int)q.size() - 1) + 1; const int cut = 32768; buffer1.assign(n, 0); for(auto i = 0; i < (int)p.size(); ++ i) buffer1[i] = {(double)((int)p[i] / cut), (double)((int)p[i] % cut)}; transform(buffer1); buffer2.assign(n, 0); for(auto i = 0; i < (int)q.size(); ++ i) buffer2[i] = {(double)((int)q[i] / cut), (double)((int)q[i] % cut)}; transform(buffer2); for(auto i = 0; i <= n >> 1; ++ i){ int j = -i & n - 1; if(i == j){ tie(buffer1[i], buffer2[i]) = pair{ (buffer1[i] + conj(buffer1[i])) * buffer2[i] / 2.0, (buffer1[i] - conj(buffer1[i])) * buffer2[i] / 2i }; } else{ tie(buffer1[i], buffer2[i], buffer1[j], buffer2[j]) = tuple{ (buffer1[i] + conj(buffer1[j])) * buffer2[i] / 2.0, (buffer1[i] - conj(buffer1[j])) * buffer2[i] / 2i, (buffer1[j] + conj(buffer1[i])) * buffer2[j] / 2.0, (buffer1[j] - conj(buffer1[i])) * buffer2[j] / 2i }; } } transform(buffer1, true); transform(buffer2, true); vector<T> res((int)p.size() + (int)q.size() - 1); for(auto i = 0; i < (int)res.size(); ++ i) res[i] = ((T)llround(buffer1[i].real()) * cut + (T)(llround(buffer1[i].imag()) + llround(buffer2[i].real()))) * cut + (T)llround(buffer2[i].imag()); return res; } }; vector<complex<double>> fast_fourier_transform_wrapper::root; vector<complex<long double>> fast_fourier_transform_wrapper::root_ld; vector<complex<double>> fast_fourier_transform_wrapper::buffer1; vector<complex<double>> fast_fourier_transform_wrapper::buffer2; using fft = fast_fourier_transform_wrapper; int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); int n, f; cin >> n >> f; vector<int> a(n), b(n), c(n); copy_n(istream_iterator<int>(cin), n, a.begin()); copy_n(istream_iterator<int>(cin), n, b.begin()); copy_n(istream_iterator<int>(cin), n, c.begin()); bitset<900'001> bs; bs.set(0); for(auto i = 0; i < n; ++ i){ bs = bs << a[i] | bs << b[i] | bs << c[i]; cout << bs.count() << "\n"; } return 0; } /* */