結果
問題 |
No.1918 Simple Math ?
|
ユーザー |
|
提出日時 | 2025-03-08 12:27:24 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 432 ms / 2,000 ms |
コード長 | 5,899 bytes |
コンパイル時間 | 6,723 ms |
コンパイル使用メモリ | 333,600 KB |
実行使用メモリ | 14,728 KB |
最終ジャッジ日時 | 2025-03-08 12:27:38 |
合計ジャッジ時間 | 13,371 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 33 |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; namespace my{ using ml=atcoder::modint1000000007; auto&operator>>(istream&i,ml&x){int t;i>>t;x=t;return i;} auto&operator<<(ostream&o,const ml&x){return o<<(int)x.val();} #define eb emplace_back #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define FO(n) for(ll ij=n;ij-->0;) #define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step) #define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__)) #define of(i,...) for(auto[i,i##stop,i##step]=range(1,__VA_ARGS__);i>=i##stop;i+=i##step) #define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a) #define bit_sizeof(T) ll(sizeof(T)*CHAR_BIT) #define base_operator(op,type) auto operator op(const type&v)const{auto copy=*this;return copy op##=v;} #define multiple_testcases void solve();}int main(){my::io();int T;std::cin>>T;while(T--)my::solve();}namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);} using ll=long long; constexpr auto range(ll s,ll b){ll a=0;if(s)swap(a,b);return array{a-s,b,1-s*2};} constexpr auto range(ll s,ll a,ll b,ll c=1){return array{a-s,b,(1-s*2)*c};} constexpr char newline=10; constexpr char space=32; constexpr auto schrodinger(bool p,char c){return string(p,c);} constexpr auto schrodinger(bool p,auto c){return p*c;} constexpr auto square(auto x){return x*x;} template<class T>concept addable=requires(T a,T b){{a+b}->same_as<T>;}; template<class A,class B>struct pair{ A a;B b; pair()=default; pair(A a,B b):a(a),b(b){} pair(const std::pair<A,B>&p):a(p.first),b(p.second){} auto operator<=>(const pair&)const=default; pair operator+(const pair&p)const{return{a+p.a,b+p.b};} friend istream&operator>>(istream&i,pair&p){return i>>p.a>>p.b;} friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<space<<p.b;} }; template<ll k,class...A>using pack_kth_t=tuple_element_t<k,std::tuple<A...>>; template<ll k>auto pack_kth(const auto&...a){return get<k>(make_tuple(a...));} template<class T,ll n>auto pack_prefix_array(const auto&...a){return[&]<size_t...I>(index_sequence<I...>){return array<T,n>{get<I>(make_tuple(a...))...};}(make_index_sequence<n>{});} template<class V>concept vectorial=is_base_of_v<vector<typename V::value_type>,V>; template<class T>struct vec_attr{using core_type=T;static constexpr int rank=0;}; template<vectorial V>struct vec_attr<V>{using core_type=typename vec_attr<typename V::value_type>::core_type;static constexpr int rank=vec_attr<typename V::value_type>::rank+1;}; template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;} template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<schrodinger(&e!=&v.back(),vectorial<V>?newline:space);return o;} template<class V>struct vec; template<int rank,class T>struct tensor_helper{using type=vec<typename tensor_helper<rank-1,T>::type>;}; template<class T>struct tensor_helper<0,T>{using type=T;}; template<int rank,class T>using tensor=typename tensor_helper<rank,T>::type; template<class V>struct vec:vector<V>{ static constexpr int R=vec_attr<V>::rank+1; using C=vec_attr<V>::core_type; using vector<V>::vector; vec(const vector<V>&v){vector<V>::operator=(v);} template<class...A>requires(sizeof...(A)>=3)vec(const A&...a){resizes(pack_prefix_array<ll,R>(a...),pack_kth<R>(a...));} void resizes(const array<ll,R>&s,C x={}){*this=std::move(make(s,x));} template<ll i=0>static auto make(const array<ll,R>&s,C x){if constexpr(i==R-1)return vec<C>(s[i],x);else return tensor<R-i,C>(s[i],make<i+1>(s,x));} vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} vec&operator+=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]+=u[i];return v;} vec&operator-=(const vec&u){vec&v=*this;assert(v.size()==u.size());fo(i,v.size())v[i]-=u[i];return v;} base_operator(^,vec) base_operator(+,vec) base_operator(-,vec) vec&operator--(){fe(*this,e)--e;return*this;} ll size()const{return vector<V>::size();} vec zeta()const{vec v=*this;if constexpr(vectorial<V>)fe(v,e)e=e.zeta();fo(i,v.size()-1)v[i+1]+=v[i];return v;} }; template<class...A>requires(sizeof...(A)>=2)vec(const A&...a)->vec<tensor<sizeof...(A)-2,pack_kth_t<sizeof...(A)-1,A...>>>; vec(ll)->vec<ll>; void lin(auto&...a){(cin>>...>>a);} void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<schrodinger(--n>0,space)),...);cout<<newline;} constexpr uint64_t kth_root_floor(uint64_t a,ll k){ if (k==1)return a; auto within=[&](uint32_t x){uint64_t t=1;fo(k)if(__builtin_mul_overflow(t,x,&t))return false;return t<=a;}; uint64_t r=0; of(i,bit_sizeof(uint32_t))if(within(r|(1u<<i)))r|=1u<<i; return r; } template<class T>constexpr T sqrt_floor(T x){return kth_root_floor(x,2);} auto divmod(auto a,auto b){return pair{a/b,a%b};} auto mod(auto a,auto b){return(a%=b)<0?a+b:a;} template<class T>T square_sum(T n){return n*(n+1)/2*(n*2+1)/3;} template<class T>T square_sum(const vec<ll>&a){ T res=0; fe(a,e)res+=T(e)*e; return res; } template<class T>struct circle_vec:vec<T>{ vec<T>su; circle_vec(ll n):vec<T>(n){} circle_vec(const initializer_list<T>&a={}){fe(a,e)this->eb(e);if constexpr(addable<T>)build_zeta();} circle_vec(const vec<T>&v){fe(v,e)this->eb(e);if constexpr(addable<T>)build_zeta();} void build_zeta()requires(addable<T>){su=this->zeta();} T&operator[](ll i){ll n=this->size();return vec<T>::operator[]((i%n+n)%n);} T operator[](ll i)const{ll n=this->size();return vec<T>::operator[]((i%n+n)%n);} T circle_sum(ll n)const requires(addable<T>){auto[q,r]=divmod(n,this->size());return su.back()*q+schrodinger(r,su[r-1]);} }; multiple_testcases void solve(){ LL(a,N); ll M=sqrt_floor(a*N); circle_vec<ml>v(a); fo(i,a)v[i]=mod(square(i+1)-1,a); v.build_zeta(); pp(ml(N)*M-(square_sum<ml>(M)-M-v.circle_sum(M))/a); }}