結果
| 問題 |
No.1540 級数おもちゃ
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-20 20:43:16 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 277 ms / 2,000 ms |
| コード長 | 1,536 bytes |
| コンパイル時間 | 325 ms |
| コンパイル使用メモリ | 82,408 KB |
| 実行使用メモリ | 92,380 KB |
| 最終ジャッジ日時 | 2025-03-20 20:43:42 |
| 合計ジャッジ時間 | 10,762 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 31 |
ソースコード
mod = 998244353
max_j = 10**5
# Precompute pow2: pow2[j] = 2^j mod mod
pow2 = [1] * (max_j + 1)
for j in range(1, max_j + 1):
pow2[j] = (pow2[j-1] * 2) % mod
max_n = max_j # n ranges from 0 to max_j - 1
a = [0] * max_n
b = [0] * max_n
c = [0] * max_n
# n = 0
a[0] = pow(6, mod-2, mod) # 1/6 mod mod
b[0] = 0
c[0] = 0
# n = 1
if max_n >= 1:
a[1] = 0
inv2 = pow(2, mod-2, mod)
b[1] = (mod - inv2) % mod
c[1] = 1
# Precompute a, b, c for n >= 2 up to max_n-1
for n in range(2, max_n):
inv_n = pow(n, mod-2, mod)
term1 = ((n - 1) * inv_n) % mod
# a[n] = term1 * a[n-2]
a[n] = (term1 * a[n-2]) % mod
# b[n] = term1 * b[n-2] - 1/(2^n * n)
term_b1 = (term1 * b[n-2]) % mod
denominator = (pow2[n] * n) % mod
inv_denominator = pow(denominator, mod-2, mod)
term_b2 = (mod - inv_denominator) % mod # -1/(2^n *n)
b[n] = (term_b1 + term_b2) % mod
# c[n] = term1 * c[n-2]
c[n] = (term1 * c[n-2]) % mod
# Read input
import sys
input = sys.stdin.read().split()
N = int(input[0])
A = list(map(int, input[1:N+1]))
sum_a = 0
sum_b = 0
sum_c = 0
for idx in range(N):
j = idx + 1
Aj = A[idx]
n = j - 1
if n >= max_n:
pass
else:
current_a = (c[n] * pow2[j]) % mod
current_b = (b[n] * pow2[j]) % mod
current_c = (a[n] * pow2[j]) % mod
sum_a = (sum_a + Aj * current_a) % mod
sum_b = (sum_b + Aj * current_b) % mod
sum_c = (sum_c + Aj * current_c) % mod
print(sum_a, sum_b, sum_c)
lam6er