結果
問題 |
No.1611 Minimum Multiple with Double Divisors
|
ユーザー |
![]() |
提出日時 | 2025-03-20 20:52:14 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,916 bytes |
コンパイル時間 | 178 ms |
コンパイル使用メモリ | 82,384 KB |
実行使用メモリ | 103,888 KB |
最終ジャッジ日時 | 2025-03-20 20:52:55 |
合計ジャッジ時間 | 24,871 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 2 |
other | AC * 1 WA * 10 TLE * 1 -- * 25 |
ソースコード
import sys import math import random def input(): return sys.stdin.read() def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n - 1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n and is_prime(d): return d elif d != n: continue else: break return d def factor(n): if n == 1: return [] factors = [] while n > 1: if is_prime(n): factors.append(n) break d = pollards_rho(n) if is_prime(d): factors.append(d) n //= d else: factors.extend(factor(d)) n //= d return factors def get_prime_factors(n): if n == 1: return {} factors_list = factor(n) factor_counts = {} for p in factors_list: if p in factor_counts: factor_counts[p] += 1 else: factor_counts[p] = 1 return factor_counts primes_strategy1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] def solve(): data = sys.stdin.read().split() T = int(data[0]) results = [] for i in range(1, T + 1): X = int(data[i]) if X == 1: results.append(2) continue factors = get_prime_factors(X) factors_p = set(factors.keys()) p_strategy1 = None for p in primes_strategy1: if X % p != 0: p_strategy1 = p break if p_strategy1 is None: p_candidate = 2 while True: if p_candidate not in factors_p and is_prime(p_candidate): p_strategy1 = p_candidate break p_candidate += 1 Y1 = X * p_strategy1 min_Y = Y1 for p in factors: exponent = factors[p] Y_candidate = X * (p ** (exponent + 1)) if Y_candidate < min_Y: min_Y = Y_candidate results.append(min_Y) print('\n'.join(map(str, results))) if __name__ == '__main__': solve()