結果

問題 No.1745 Selfish Spies 2 (à la Princess' Perfectionism)
ユーザー Taiki0715
提出日時 2025-03-21 16:00:48
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 147 ms / 5,000 ms
コード長 11,769 bytes
コンパイル時間 4,955 ms
コンパイル使用メモリ 309,632 KB
実行使用メモリ 33,036 KB
最終ジャッジ日時 2025-03-21 16:00:59
合計ジャッジ時間 10,565 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 59
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll=long long;
using ull=unsigned long long;
using P=pair<ll,ll>;
template<typename T>using minque=priority_queue<T,vector<T>,greater<T>>;
template<typename T>bool chmax(T &a,const T &b){return (a<b?(a=b,true):false);}
template<typename T>bool chmin(T &a,const T &b){return (a>b?(a=b,true):false);}
template<typename T1,typename T2>istream &operator>>(istream &is,pair<T1,T2>&p){is>>p.first>>p.second;return is;}
template<typename T1,typename T2,typename T3>istream &operator>>(istream &is,tuple<T1,T2,T3>&a){is>>std::get<0>(a)>>std::get<1>(a)>>std::get<2>(a);return is;}
template<typename T,size_t n>istream &operator>>(istream &is,array<T,n>&a){for(auto&i:a)is>>i;return is;}
template<typename T>istream &operator>>(istream &is,vector<T> &a){for(auto &i:a)is>>i;return is;}
template<typename T1,typename T2>void operator++(pair<T1,T2>&a,int n){a.first++,a.second++;}
template<typename T1,typename T2>void operator--(pair<T1,T2>&a,int n){a.first--,a.second--;}
template<typename T>void operator++(vector<T>&a,int n){for(auto &i:a)i++;}
template<typename T>void operator--(vector<T>&a,int n){for(auto &i:a)i--;}
#define overload3(_1,_2,_3,name,...) name
#define rep1(i,n) for(int i=0;i<(int)(n);i++)
#define rep2(i,l,r) for(int i=(int)(l);i<(int)(r);i++)
#define rep(...) overload3(__VA_ARGS__,rep2,rep1)(__VA_ARGS__)
#define reps(i,l,r) rep2(i,l,r)
#define all(x) x.begin(),x.end()
#define pcnt(x) __builtin_popcountll(x)
#define fin(x) return cout<<(x)<<'\n',static_cast<void>(0)
#define yn(x) cout<<((x)?"Yes\n":"No\n")
#define uniq(x) sort(all(x)),x.erase(unique(all(x)),x.end())
ll myceil(ll a,ll b){return (a+b-1)/b;}
template<typename T,size_t n,size_t id=0>
auto vec(const int (&d)[n],const T &init=T()){
  if constexpr (id<n)return vector(d[id],vec<T,n,id+1>(d,init));
  else return init;
}
#ifdef LOCAL
#include<debug.h>
#else
#define debug(...) static_cast<void>(0)
#define debugg(...) static_cast<void>(0)
template<typename T1,typename T2>ostream &operator<<(ostream &os,const pair<T1,T2>&p){os<<p.first<<' '<<p.second;return os;}
#endif
struct Timer{
  clock_t start;
  Timer(){
    start=clock();
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout<<fixed<<setprecision(16);
  }
  inline double now(){return (double)(clock()-start)/1000;}
  #ifdef LOCAL
  ~Timer(){
    cerr<<"time:";
    cerr<<now();
    cerr<<"ms\n";
  }
  #endif
}timer;
void SOLVE();
int main(){
  int testcase=1;
  //cin>>testcase;
  for(int i=0;i<testcase;i++){
    SOLVE();
  }
}
std::vector<std::pair<int,int>>bipartite_matching(int L,int R,const std::vector<std::pair<int,int>>&edge){
  static constexpr int h=0x3c07e67b;
  std::vector<int>ptr(L+R+1);
  std::vector<int>g(edge.size()*2);
  for(const auto&[u,v]:edge){
    ptr[u]++,ptr[L+v]++;
  }
  for(int i=1;i<=L+R;i++)ptr[i]+=ptr[i-1];
  for(const auto&[u,v]:edge){
    g[--ptr[u]]=L+v;
    g[--ptr[L+v]]=u;
  }
  std::vector<int>mate(L+R,-1);
  std::vector<bool>seen(L+R,false);
  auto dfs=[&](auto self,int x)->void {
    seen[x]=true;
    for(int i=ptr[x];i<ptr[x+1];i++){
      int j=g[i];
      if(!seen[j]){
        self(self,j);
        if(mate[x]==-1&&mate[j]==-1){
          mate[x]=j;
          mate[j]=x;
        }
      }
    }
  };
  for(int i=0;i<seen.size();i++)if(!seen[i]){
    dfs(dfs,i);
  }
  std::vector<int>que(L);
  int p,q;
  std::vector<int>vis(L,-1),d(L);
  int s=0;
  while(true){
    p=q=0;
    for(int i=0;i<L;i++){
      if(mate[i]==-1){
        d[i]=0;
        que[q++]=i;
      }
      else d[i]=h;
    }
    while(p<q){
      int x=que[p++];
      for(int i=ptr[x];i<ptr[x+1];i++){
        int j=g[i];
        if(mate[j]!=-1&&d[mate[j]]==h){
          d[mate[j]]=d[x]+1;
          que[q++]=mate[j];
        }
      }
    }
    auto dfs=[&](auto self,int x)->bool {
      vis[x]=s;
      for(int i=ptr[x];i<ptr[x+1];i++){
        int j=g[i];
        if(mate[j]==-1||(d[mate[j]]-d[x]==1&&vis[mate[j]]!=s&&self(self,mate[j]))){
          mate[x]=j;
          mate[j]=x;
          return true;
        }
      }
      return false;
    };
    bool f=false;
    for(int i=0;i<L;i++){
      if(vis[i]!=s&&mate[i]==-1){
        f|=dfs(dfs,i);
      }
    }
    if(!f)break;
    s++;
  }
  std::vector<std::pair<int,int>>res;
  res.reserve(L-std::count(mate.begin(),mate.begin()+L,-1));
  for(int i=0;i<L;i++)if(mate[i]!=-1)res.emplace_back(i,mate[i]-L);
  return res;
}
template<typename T>
struct fast_stack{
private:
  T *st;
  int p;
public:
  fast_stack(int n):p(0){
    st=new T[n];
  }
  fast_stack(){}
  inline void push(const T&x){st[p++]=x;}
  template<typename...Args>
  inline T& emplace(Args&&...args){
    st[p++]=T(std::forward<Args>(args)...);
    return st[p-1];
  }
  inline T& pop(){return st[--p];}
  inline T top()const{return st[p-1];}
  inline T& top(){return st[p-1];}
  inline int size()const{return p;}
  inline bool empty()const{return !p;}
  inline void clear(){p=0;}
  ~fast_stack(){delete[] st;}
};
template<typename T=int>
struct Edge{
  int from,to;
  T weight;
  int index;
  Edge(int from_,int to_,T weight_=T(),int index_=-1):from(from_),to(to_),weight(weight_),index(index_){}
  Edge():from(-1),to(-1),weight(),index(-1){}
  friend std::ostream &operator<<(std::ostream &os,const Edge&e){
    os<<'[';
    os<<"from:"<<e.from;
    os<<"to:"<<e.to;
    os<<"weight:"<<e.weight;
    os<<"index:"<<e.index;
    os<<']';
    return os;
  }
};
template<typename T=int>
struct Graph{
private:
  int n;
  std::vector<Edge<T>>edge;
  std::vector<Edge<T>>g;
  std::vector<int>ptr;
  bool directed;
  struct graph_range{
    using iterator=typename std::vector<Edge<T>>::iterator;
    iterator l,r;
    iterator begin()const{return l;}
    iterator end()const{return r;}
    int size()const{return r-l;}
    Edge<T> &operator[](int i)const{return l[i];}
  };
  struct const_graph_range{
    using iterator=typename std::vector<Edge<T>>::const_iterator;
    iterator l,r;
    iterator begin()const{return l;}
    iterator end()const{return r;}
    int size()const{return r-l;}
    const Edge<T> &operator[](int i)const{return l[i];}
  };
public:
  Graph(int n_,bool dir_):n(n_),directed(dir_){}
  Graph():n(0){}
  Graph(int n_,bool dir_,const std::vector<Edge<T>>&e):n(n_),directed(dir_),edge(e){build();}
  template<bool weighted=false,bool index=1>
  void read(int m){
    edge.reserve(m);
    for(int i=0;i<m;i++){
      int u,v;
      std::cin>>u>>v;
      T w;
      if constexpr(index)u--,v--;
      if constexpr(weighted)std::cin>>w;
      else w=1;
      edge.emplace_back(u,v,w,i);
    }
    build();
  }
  void add_edge(int u,int v){
    int id=edge.size();
    edge.emplace_back(u,v,1,id);
  }
  void add_edge(int u,int v,T w){
    int id=edge.size();
    edge.emplace_back(u,v,w,id);
  }
  void add_edge(int u,int v,T w,int index){
    edge.emplace_back(u,v,w,index);
  }
  void build(){
    std::vector<int>cnt(n+1,0);
    for(const Edge<T>&e:edge){
      cnt[e.from+1]++;
      if(!directed)cnt[e.to+1]++;
    }
    for(int i=1;i<=n;i++)cnt[i]+=cnt[i-1];
    ptr=cnt;
    g.resize(cnt[n]);
    for(const Edge<T>&e:edge){
      g[cnt[e.from]++]=e;
      if(!directed)g[cnt[e.to]++]=Edge<T>(e.to,e.from,e.weight,e.index);
    }
  }
  void reverse(){
    if(directed){
      for(Edge<T>&e:edge)std::swap(e.from,e.to);
      build();
    }
  }
  inline void to_directed(){
    directed=true;
    build();
  }
  inline void to_undirected(){
    directed=false;
    build();
  }
  void reserve(int m){edge.reserve(m);}
  graph_range operator[](int i){return graph_range{g.begin()+ptr[i],g.begin()+ptr[i+1]};}
  const_graph_range operator[](int i)const{return const_graph_range{g.begin()+ptr[i],g.begin()+ptr[i+1]};}
  const Edge<T>& get_edge(int i)const{return edge[i];}
  inline bool is_directed()const{return directed;}
  inline int size()const{return n;}
  inline int edge_size()const{return edge.size();}
  typename std::vector<Edge<T>>::iterator begin(){return edge.begin();}
  typename std::vector<Edge<T>>::iterator end(){return edge.end();}
  typename std::vector<Edge<T>>::const_iterator begin()const{return edge.begin();}
  typename std::vector<Edge<T>>::const_iterator end()const{return edge.end();}
};
template<typename T>
std::vector<int>strongly_connected_components(Graph<T>g){
  int n=g.size();
  std::vector<bool>seen(n,false);
  fast_stack<int>st(g.edge_size()+1);
  std::vector<int>vis;
  vis.reserve(n);
  for(int i=0;i<n;i++)if(!seen[i]){
    st.push(i);
    while(!st.empty()){
      int x=st.pop();
      if(x<0){
        vis.push_back(~x);
        continue;
      }
      if(seen[x])continue;
      seen[x]=true;
      st.push(~x);
      for(const Edge<T>&e:g[x])if(!seen[e.to])st.push(e.to);
    }
  }
  std::vector<int>scc(n,-1);
  g.reverse();
  int sp=0;
  for(int i=n-1;i>=0;i--)if(scc[vis[i]]==-1){
    st.push(vis[i]);
    while(!st.empty()){
      int x=st.pop();
      scc[x]=sp;
      for(const Edge<T>&e:g[x])if(scc[e.to]==-1)st.push(e.to);
    }
    sp++;
  }
  return scc;
}
std::vector<std::pair<std::vector<int>,std::vector<int>>>dulmage_mendelsohn_decomposition(int l,int r,const std::vector<std::pair<int,int>>&edge){
  std::vector<std::pair<int,int>>match=bipartite_matching(l,r,edge);
  std::vector<int>usedl(l+1,0),usedr(r+1,0);
  Graph<>g(l+r,true);
  for(const auto&[u,v]:edge)g.add_edge(u,v+l);
  for(const auto&[u,v]:match){
    usedl[u]=true;
    usedr[v]=true;
    g.add_edge(v+l,u);
  }
  g.build();
  std::vector<int>w0l,w0r,wkl,wkr;
  std::vector<bool>w0k(l+r,false);
  std::queue<int>que;
  for(int i=0;i<l;i++)if(!usedl[i]){
    que.push(i);
    w0k[i]=true;
  }
  while(!que.empty()){
    int x=que.front();
    que.pop();
    if(x<l)wkl.push_back(x);
    else wkr.push_back(x-l);
    for(const Edge<>&e:g[x])if(!w0k[e.to]){
      w0k[e.to]=true;
      que.push(e.to);
    }
  }
  g.reverse();
  for(int i=0;i<r;i++)if(!usedr[i]){
    que.push(i+l);
    w0k[i+l]=true;
  }
  while(!que.empty()){
    int x=que.front();
    que.pop();
    if(x<l)w0l.push_back(x);
    else w0r.push_back(x-l);
    for(const Edge<>&e:g[x])if(!w0k[e.to]){
      w0k[e.to]=true;
      que.push(e.to);
    }
  }
  for(int i=0;i<l;i++)if(w0k[i])usedl[i]=0;
  for(int i=0;i<r;i++)if(w0k[i+l])usedr[i]=0;
  for(int i=l-1;i>=0;i--)usedl[i]+=usedl[i+1];
  for(int i=r-1;i>=0;i--)usedr[i]+=usedr[i+1];
  if(usedl[0]+usedr[0]==0){
    std::vector<std::pair<std::vector<int>,std::vector<int>>>res(2);
    res[0]=std::make_pair(std::move(w0l),std::move(w0r));
    res[1]=std::make_pair(std::move(wkl),std::move(wkr));
    return res;
  }
  Graph<>g2(usedl[0]+usedr[0],true);
  for(const auto&[u,v]:edge){
    if(usedl[u]==usedl[u+1])continue;
    if(usedr[v]==usedr[v+1])continue;
    g2.add_edge(usedl[u+1],usedr[v+1]+usedl[0]);
  }
  for(const auto&[u,v]:match){
    if(usedl[u]==usedl[u+1])continue;
    if(usedr[v]==usedr[v+1])continue;
    g2.add_edge(usedr[v+1]+usedl[0],usedl[u+1]);
  }
  g2.build();
  std::vector<int>scc=strongly_connected_components(g2);
  int sz=*std::max_element(scc.begin(),scc.end())+1;
  std::vector<std::pair<std::vector<int>,std::vector<int>>>res(sz+2);
  res[0]=std::make_pair(std::move(w0l),std::move(w0r));
  res[sz+1]=std::make_pair(std::move(wkl),std::move(wkr));
  for(int i=0;i<l;i++)if(usedl[i]!=usedl[i+1]){
    res[scc[usedl[i+1]]+1].first.push_back(i);
  }
  for(int i=0;i<r;i++)if(usedr[i]!=usedr[i+1]){
    res[scc[usedl[0]+usedr[i+1]]+1].second.push_back(i);
  }
  return res;
}
void SOLVE(){
  int n,m,l;
  cin>>n>>m>>l;
  vector<pair<int,int>>edge(l);
  cin>>edge;
  edge--;
  auto dmd=dulmage_mendelsohn_decomposition(n,m,edge);
  vector<pair<int,int>>no;
  vector<int>lid(n),rid(m);
  rep(i,dmd.size()){
    for(int v:dmd[i].first)lid[v]=i;
    for(int v:dmd[i].second)rid[v]=i;
  }
  for(auto [u,v]:edge)yn(lid[u]==rid[v]);
}
0