結果
| 問題 |
No.3072 Speedrun Query
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-03-21 21:46:13 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 2,348 ms / 2,500 ms |
| コード長 | 5,348 bytes |
| コンパイル時間 | 200 ms |
| コンパイル使用メモリ | 82,352 KB |
| 実行使用メモリ | 250,312 KB |
| 最終ジャッジ日時 | 2025-03-21 21:46:42 |
| 合計ジャッジ時間 | 23,684 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 21 |
ソースコード
import sys, time, random
from collections import deque, Counter, defaultdict
def debug(*x):print('debug:',*x, file=sys.stderr)
input = lambda: sys.stdin.readline().rstrip()
ii = lambda: int(input())
mi = lambda: map(int, input().split())
li = lambda: list(mi())
inf = 2 ** 61 - 1
mod = 998244353
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 50
REBUILD_RATIO = 170
def _build(self, a=None) -> None:
"Evenly divide `a` into buckets."
if a is None: a = list(self)
size = self.size = len(a)
bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
a = sorted(set(a))
self._build(a)
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _find_bucket(self, x: T) -> List[T]:
"Find the bucket which should contain x. self must not be empty."
for a in self.a:
if x <= a[-1]: return a
return a
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a = self._find_bucket(x)
i = bisect_left(a, x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a = self._find_bucket(x)
i = bisect_left(a, x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.REBUILD_RATIO:
self._build()
return True
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a = self._find_bucket(x)
i = bisect_left(a, x)
if i == len(a) or a[i] != x: return False
a.pop(i)
self.size -= 1
if len(a) == 0: self._build()
return True
def lt(self, x: T) -> Union[T, None]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Union[T, None]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Union[T, None]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Union[T, None]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, x: int) -> T:
"Return the x-th element, or IndexError if it doesn't exist."
if x < 0: x += self.size
if x < 0: raise IndexError
for a in self.a:
if x < len(a): return a[x]
x -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
n, ka, kb = mi()
a = li()
b = li()
a.append(inf)
a.append(-inf)
b.append(inf)
b.append(-inf)
A = SortedSet(a)
B = SortedSet(b)
neara = [0] + [min(abs(A.le(x) - x), abs(A.ge(x) - x)) for x in range(1, n + 1)]
nearb = [0] + [min(abs(B.le(x) - x), abs(B.ge(x) - x)) for x in range(1, n + 1)]
nearabd = inf
for v in a:
if v == -inf or v == inf:
continue
nearabd = min(nearabd, min(abs(B.le(v) - v), abs(B.ge(v) - v)))
for v in b:
if v == -inf or v == inf:
continue
nearabd = min(nearabd, min(abs(A.le(v) - v), abs(A.ge(v) - v)))
q = ii()
for _ in range(q):
s, t = mi()
ans = abs(t - s)
ans = min(ans, neara[s] + neara[t])
ans = min(ans, nearb[s] + nearb[t])
ans = min(ans, neara[s] + nearb[t] + nearabd)
ans = min(ans, nearb[s] + neara[t] + nearabd)
print(ans)