結果

問題 No.3081 Make Palindromic Multiple
ユーザー hamamu
提出日時 2025-03-23 15:54:18
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
RE  
実行時間 -
コード長 61,064 bytes
コンパイル時間 8,754 ms
コンパイル使用メモリ 372,460 KB
実行使用メモリ 18,716 KB
最終ジャッジ日時 2025-03-27 13:26:21
合計ジャッジ時間 42,509 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 51 RE * 3
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#if !defined(MYLOCAL)//
#pragma GCC optimize("Ofast")
#if defined(NDEBUG)
#undef NDEBUG
#endif
#include "bits/stdc++.h"
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
using namespace std;
using ll=long long;
using dd=long double;
using pll=pair<ll,ll>;
using tll=tuple<ll,ll,ll>;
using qll=tuple<ll,ll,ll,ll>;
using ll2=array<ll,2>;
using ll3=array<ll,3>;
using ll4=array<ll,4>;
using namespace chrono;
constexpr ll INF = 1201001001001001001;
struct Fast{ Fast(){ cin.tie(0); ios::sync_with_stdio(false); cout<<fixed<<setprecision(numeric_limits<double>::max_digits10); } } fast;
#define EXPAND( x ) x//VS
#define overload3(_1,_2,_3,name,...) name
#define overload4(_1,_2,_3,_4,name,...) name
#define overload5(_1,_2,_3,_4,_5,name,...) name
#define rep1(N) for (ll dmyi = 0; dmyi < (N); dmyi++)
#define rep2(i, N) for (ll i = 0; i < (N); i++)
#define rep3(i, S, E) for (ll i = (S); i <= (E); i++)
#define rep4(i, S, E, t) for (ll i = (S); i <= (E); i+=(t))
#define rep(...) EXPAND(overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__))
#define dep3(i, E, S) for (ll i = (E); i >= (S); i--)
#define dep4(i, E, S, t) for (ll i = (E); i >= (S); i-=(t))
#define dep(...) EXPAND(overload4(__VA_ARGS__, dep4, dep3,_,_)(__VA_ARGS__))
#define ALL1(v) (v).begin(), (v).end()
#define ALL2(v,E) (v).begin(), (v).begin()+((E)+1)
#define ALL3(v,S,E) (v).begin()+(S), (v).begin()+((E)+1)
#define all(...) EXPAND(overload3(__VA_ARGS__, ALL3, ALL2, ALL1)(__VA_ARGS__))
#define RALL1(v) (v).rbegin(), (v).rend()
#define RALL2(v,E) (v).rbegin(), (v).rbegin()+((E)+1)
#define RALL3(v,S,E) (v).rbegin()+(S), (v).rbegin()+((E)+1)
#define rall(...) EXPAND(overload3(__VA_ARGS__, RALL3, RALL2, RALL1)(__VA_ARGS__))
template<class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; }return false; }
template<class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; }return false; }
template<class T> inline auto maxe(T &&v,ll S,ll E){ return *max_element(all(v,S,E)); }
template<class T> inline auto maxe(T &&v){ return *max_element(all(v)); }
template<class T> inline auto mine(T &&v,ll S,ll E){ return *min_element(all(v,S,E)); }
template<class T> inline auto mine(T &&v){ return *min_element(all(v)); }
template<class T,class U=typename remove_reference<T>::type::value_type>
inline U sum(T &&v,ll S,ll E) {return accumulate(all(v,S,E),U());}
template<class T> inline auto sum(T &&v) {return sum(v,0,v.end()-v.begin()-1);}
template<class T> inline ll sz(T &&v){ return (ll)v.size(); }
inline ll Ceil(ll a,ll b){ return (a<0) ? -(-a/b) : (a+b-1)/b; } //OK
inline ll Floor(ll a,ll b){ return -Ceil(-a,b); } //OK
inline ll Floormod(ll a,ll m){ return Floor(a,m)*m; } //OK
inline ll Ceilmod(ll a,ll m){ return Ceil(a,m)*m; } //OK
inline ll Mod(ll a,ll m){ ll r=a%m; if(r<0)r+=m; return r; } //OK
template<class T> inline T Pow(T a,ll n){ T r=1; for(; n>0; n>>=1,a*=a){ if(n&1)r*=a; } return r; }
inline ll Pow(int a,ll n){ return Pow((ll)a,n); }
inline ll limitmul(ll a,ll b,ll u){ return b==0||a<=u/b ? a*b : u; }//min(a*b,u) a,b,u≧0
//pair
template<class T,class S> inline pair<T,S>& operator+=(pair<T,S> &a,const pair<T,S> &b){ a.first+=b.first; a.second+=b.second; return a; }
template<class T,class S> inline pair<T,S>& operator-=(pair<T,S> &a,const pair<T,S> &b){ a.first-=b.first; a.second-=b.second; return a; }
template<class T,class S> inline pair<T,S>& operator*=(pair<T,S> &a,const pair<T,S> &b){ a.first*=b.first; a.second*=b.second; return a; }
template<class T,class S> inline pair<T,S>& operator/=(pair<T,S> &a,const pair<T,S> &b){ a.first/=b.first; a.second/=b.second; return a; }
template<class T,class S> inline pair<T,S>& operator%=(pair<T,S> &a,const pair<T,S> &b){ a.first%=b.first; a.second%=b.second; return a; }
template<class T,class S,class R> inline pair<T,S>& operator+=(pair<T,S> &a,R b){ a.first+=b; a.second+=b; return a; }
template<class T,class S,class R> inline pair<T,S>& operator-=(pair<T,S> &a,R b){ a.first-=b; a.second-=b; return a; }
template<class T,class S,class R> inline pair<T,S>& operator*=(pair<T,S> &a,R b){ a.first*=b; a.second*=b; return a; }
template<class T,class S,class R> inline pair<T,S>& operator/=(pair<T,S> &a,R b){ a.first/=b; a.second/=b; return a; }
template<class T,class S,class R> inline pair<T,S>& operator%=(pair<T,S> &a,R b){ a.first%=b; a.second%=b; return a; }
template<class T,class S,class R> inline pair<T,S> operator+(const pair<T,S> &a,R b){ pair<T,S> c=a; return c+=b; }
template<class T,class S,class R> inline pair<T,S> operator-(const pair<T,S> &a,R b){ pair<T,S> c=a; return c-=b; }
template<class T,class S,class R> inline pair<T,S> operator*(const pair<T,S> &a,R b){ pair<T,S> c=a; return c*=b; }
template<class T,class S,class R> inline pair<T,S> operator/(const pair<T,S> &a,R b){ pair<T,S> c=a; return c/=b; }
template<class T,class S,class R> inline pair<T,S> operator%(const pair<T,S> &a,R b){ pair<T,S> c=a; return c%=b; }
template<class T,class S,class R> inline pair<T,S> operator-(R b,const pair<T,S> &a){ pair<T,S> c=-a; return c+=b; }
template<class T,class S> inline pair<T,S> operator-(const pair<T,S> &a,const pair<T,S> &b){ pair<T,S> c=a; return c-=b; }
template<class T,class S> inline pair<T,S> operator-(const pair<T,S> &a){ pair<T,S> c=a; return c*=(-1); }
template<class T,class S> inline ostream &operator<<(ostream &os,const pair<T,S> &a){ return os << a.first << ' ' << a.second; }
//tuple
template<class T,class S,class R> inline ostream &operator<<(ostream &os,const tuple<T,S,R> &a){ return os << get<0>(a) << ' ' << get<1>(a) << ' '
    << get<2>(a); }
template<class T,class S,class R,class Q> inline ostream &operator<<(ostream &os,const tuple<T,S,R,Q> &a){ return os << get<0>(a) << ' ' << get<1>(a
    ) << ' ' << get<2>(a) << ' ' << get<3>(a); }
//vector
template<class T> inline ostream &operator<<(ostream &os,const vector<T> &a){ for (ll i=0; i<(ll)a.size(); i++) os<<(i>0?" ":"")<<a[i]; return os;
    }
//array
template<class T,size_t S> inline array<T,S>& operator+=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]+=b[i]; return a; }
template<class T,size_t S> inline array<T,S>& operator-=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]-=b[i]; return a; }
template<class T,size_t S> inline array<T,S>& operator*=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]*=b[i]; return a; }
template<class T,size_t S> inline array<T,S>& operator/=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]/=b[i]; return a; }
template<class T,size_t S> inline array<T,S>& operator%=(array<T,S> &a,const array<T,S> &b){ for (ll i=0; i<(ll)S; i++) a[i]%=b[i]; return a; }
template<class T,size_t S,class R> inline array<T,S>& operator+=(array<T,S> &a,R b){ for (T &e: a) e+=b; return a; }
template<class T,size_t S,class R> inline array<T,S>& operator-=(array<T,S> &a,R b){ for (T &e: a) e-=b; return a; }
template<class T,size_t S,class R> inline array<T,S>& operator*=(array<T,S> &a,R b){ for (T &e: a) e*=b; return a; }
template<class T,size_t S,class R> inline array<T,S>& operator/=(array<T,S> &a,R b){ for (T &e: a) e/=b; return a; }
template<class T,size_t S,class R> inline array<T,S>& operator%=(array<T,S> &a,R b){ for (T &e: a) e%=b; return a; }
template<class T,size_t S,class R> inline array<T,S> operator+(const array<T,S> &a,R b){ array<T,S> c=a; return c+=b; }
template<class T,size_t S,class R> inline array<T,S> operator-(const array<T,S> &a,R b){ array<T,S> c=a; return c-=b; }
template<class T,size_t S,class R> inline array<T,S> operator*(const array<T,S> &a,R b){ array<T,S> c=a; return c*=b; }
template<class T,size_t S,class R> inline array<T,S> operator/(const array<T,S> &a,R b){ array<T,S> c=a; return c/=b; }
template<class T,size_t S,class R> inline array<T,S> operator%(const array<T,S> &a,R b){ array<T,S> c=a; return c%=b; }
template<class T,size_t S,class R> inline array<T,S> operator-(R b,const array<T,S> &a){ array<T,S> c=-a; return c+=b; }
template<class T,size_t S> inline array<T,S> operator-(const array<T,S> &a,const array<T,S> &b){ array<T,S> c=a; return c-=b; }
template<class T,size_t S> inline array<T,S> operator-(const array<T,S> &a){ array<T,S> c=a; return c*=(-1); }
template<class T,size_t S> inline ostream &operator<<(ostream &os,const array<T,S> &a){ for (ll i=0; i<(ll)S; i++) os<<(i>0?" ":"")<<a[i]; return
    os; }
inline struct{
system_clock::time_point st = system_clock::now();
ll operator()()const{return duration_cast<microseconds>(system_clock::now()-st).count()/1000;}
} timeget;
struct cinutil{
template<class T> static void cin1core(T &a){ cin>>a; }
template<class T,class S> static void cin1core(pair<T,S> &a){
cin1core(a.first), cin1core(a.second);
}
template<class... Args> static void cin1core(tuple<Args...> &a){
cinTplRec<tuple<Args...>,sizeof...(Args)-1>()(a);
}
template<class T,size_t N>
static void cin1core(array<T,N> &a){for(int i=0;i<(int)N;++i) cin>>a[i];}
private:
template<class Tpl,int i> struct cinTplRec{
void operator()(Tpl &a){ cinTplRec<Tpl,i-1>()(a); cin1core(get<i>(a)); }
};
template<class Tpl> struct cinTplRec<Tpl,0>{
void operator()(Tpl &a){ cin1core(get<0>(a)); }
};
};
template<class T> T cin1(){ T a; cinutil::cin1core(a); return a; }
template<class... Args> tuple<Args...> cins(){ return cin1<tuple<Args...>>(); }
template<long long MOD> struct mll_{
using Int = long long;
using ll = long long;
ll val_=0;
/*---- utility ----*/
mll_ &norm(){ return normR().normS(); }//
mll_ &normR(){ val_%=MOD; return *this; }//
mll_ &normS(){ if (val_<0) val_+=MOD; return *this; }//
mll_ &normP(){ if (val_>=MOD) val_-=MOD; return *this; }//
mll_ &invsg(){ val_=-val_; return normS(); }//
ll modinv(int a){//a^-1 mod MOD
int ypre=0,y=1,apre=MOD;
while (a>1){
int t=apre/a;
apre-=a*t,swap(a,apre);
ypre-=y*t,swap(y,ypre);
}
return y<0 ? y+MOD: y;
}
/*---- I/F ----*/
constexpr mll_(){}
mll_(ll v): val_(v){ norm(); }
constexpr mll_(ll v,bool b): val_(v){} //
Int val()const{ return (Int)val_; }
bool isnone() const { return val_==-1; } //true:
mll_ &none() { val_=-1; return *this; } //
mll_ &inv(){ val_=modinv((int)val_); return *this; }
mll_ &operator+=(mll_ b){ val_+=b.val_; return normP(); }
mll_ &operator-=(mll_ b){ val_-=b.val_; return normS(); }
mll_ &operator*=(mll_ b){ val_*=b.val_; return normR(); }
mll_ &operator/=(mll_ b){ return *this*=b.inv(); }
mll_ &operator+=(ll b){ return *this+=mll_(b); }
mll_ &operator-=(ll b){ return *this-=mll_(b); }
mll_ &operator*=(ll b){ return *this*=mll_(b); }
mll_ &operator/=(ll b){ return *this/=mll_(b); }
mll_ &operator--(int){ return *this-=1; }
mll_ &operator++(int){ return *this+=1; }
mll_ operator-()const{ return mll_(*this).invsg(); }
mll_ operator+(mll_ b)const{ return mll_(*this)+=b; }
mll_ operator-(mll_ b)const{ return mll_(*this)-=b; }
mll_ operator*(mll_ b)const{ return mll_(*this)*=b; }
mll_ operator/(mll_ b)const{ return mll_(*this)/=b; }
mll_ operator+(ll b)const{ return mll_(*this)+=b; }
mll_ operator-(ll b)const{ return mll_(*this)-=b; }
mll_ operator*(ll b)const{ return mll_(*this)*=b; }
mll_ operator/(ll b)const{ return mll_(*this)/=b; }
friend mll_ operator+(ll a,mll_ b){ return b+a; }
friend mll_ operator-(ll a,mll_ b){ return -b+a; }
friend mll_ operator*(ll a,mll_ b){ return b*a; }
friend mll_ operator/(ll a,mll_ b){ return mll_(a)/b; }
bool operator==(mll_ b)const{ return val_==b.val_; }
bool operator!=(mll_ b)const{ return val_!=b.val_; }
bool operator==(ll b)const{ return *this==mll_(b); }
bool operator!=(ll b)const{ return *this!=mll_(b); }
friend bool operator==(ll a,mll_ b){ return mll_(a)==b; }
friend bool operator!=(ll a,mll_ b){ return mll_(a)!=b; }
friend ostream &operator<<(ostream &os,mll_ a){ return os << a.val_; }
friend istream &operator>>(istream &is,mll_ &a){ return is >> a.val_; }
mll_ pow(ll k)const{
mll_ ret(1,false),a(*this);
for (; k>0; k>>=1,a*=a) if (k&1)ret*=a;
return ret;
}
static constexpr int mod() { return MOD; }
//enum{ modll=MOD };
};
struct bll{
ll s=0;
bll(ll s_=0): s(s_){}
bll(int s_): s(s_){}
bll(const string &bitstr): s(str2val(bitstr)){}
bll(const char *bitstr): s(str2val(bitstr)){}
struct ref {
bll &b; const ll msk;
ref(bll &b_,ll pos):b(b_),msk(1LL<<pos){}
operator ll() const { return (b.s&msk)!=0; }
ref &operator=(bool x){ if(x) b.s|=msk; else b.s&=~msk; return *this; }
};
ref operator[](ll pos){ return ref(*this,pos); }
ll operator[](ll pos) const { return (s>>pos)&1; }
bll &operator=(int b){ s=b; return *this; }
bll &operator=(ll b){ s=b; return *this; }
bll &operator=(const string &bitstr){ s=str2val(bitstr); return *this; }
bll &operator=(const char *bitstr){ s=str2val(bitstr); return *this; }
bll operator++(int){ bll b(*this); s++; return b; }
bll operator--(int){ bll b(*this); s--; return b; }
operator ll() const noexcept { return s; }
bll &operator&=(ll b){ s&=b; return *this; }
bll &operator|=(ll b){ s|=b; return *this; }
bll &operator^=(ll b){ s^=b; return *this; }
bll &operator+=(ll b){ s+=b; return *this; }
bll &operator-=(ll b){ s-=b; return *this; }
bll &operator<<=(ll i){ s<<=i; return *this; }
bll &operator>>=(ll i){ s>>=i; return *this; }
bll operator&(ll b)const{ return s&b; }
bll operator|(ll b)const{ return s|b; }
bll operator^(ll b)const{ return s^b; }
bll operator+(ll b)const{ return s+b; }
bll operator-(ll b)const{ return s-b; }
bll operator<<(ll i)const{ return s<<i; }
bll operator>>(ll i)const{ return s>>i; }
bll operator&(int b)const{ return s&b; }
bll operator|(int b)const{ return s|b; }
bll operator^(int b)const{ return s^b; }
bll operator+(int b)const{ return s+b; }
bll operator-(int b)const{ return s-b; }
bll operator<<(int i)const{ return s<<i; }
bll operator>>(int i)const{ return s>>i; }
bll operator~()const{ return ~s; }
bll &oneq (bll msk){ s|= msk.s; return *this; }
bll &offeq (bll msk){ s&=~msk.s; return *this; }
bll &flipeq(bll msk){ s^= msk.s; return *this; }
bll on (bll msk)const{ return bll(s).oneq (msk); }
bll off (bll msk)const{ return bll(s).offeq (msk); }
bll flip (bll msk)const{ return bll(s).flipeq(msk); }
bool any0(bll msk)const{ return ~s&msk.s; }
bool any1(bll msk)const{ return s&msk.s; }
bool all0(bll msk)const{ return !any1(msk); }
bool all1(bll msk)const{ return !any0(msk); }
bll &oneq (ll l,ll r){ return oneq (rngmsk(l,r)); }
bll &offeq (ll l,ll r){ return offeq (rngmsk(l,r)); }
bll &flipeq(ll l,ll r){ return flipeq(rngmsk(l,r)); }
bll on (ll l,ll r)const{ return on (rngmsk(l,r)); }
bll off (ll l,ll r)const{ return off (rngmsk(l,r)); }
bll flip (ll l,ll r)const{ return flip(rngmsk(l,r)); }
bool any0(ll l,ll r)const{ return any0(rngmsk(l,r)); }
bool any1(ll l,ll r)const{ return any1(rngmsk(l,r)); }
bool all0(ll l,ll r)const{ return all0(rngmsk(l,r)); }
bool all1(ll l,ll r)const{ return all1(rngmsk(l,r)); }
bll &maskeq(ll l,ll r){ s&=rngmsk(l,r); return *this; }
bll mask(ll l,ll r)const{ return bll(s).maskeq(l,r); }
bll &oneq (ll i){ s|= (1LL<<i); return *this; }
bll &offeq (ll i){ s&=~(1LL<<i); return *this; }
bll &flipeq(ll i){ s^= (1LL<<i); return *this; }
bll on (ll i)const{ return s| (1LL<<i); }
bll off (ll i)const{ return s&~(1LL<<i); }
bll flip(ll i)const{ return s^ (1LL<<i); }
bool contains(ll b)const{ return (s&b)==b; }
bll substr(ll l,ll r)const{ return (s&rngmsk(l,r))>>r; }
static bll rngmsk(ll l,ll r){ return (1LL<<(l+1))-(1LL<<r); }
ll msbit()const{
for(ll x=63,o=-1;;){
ll m=(x+o)/2;
if((1LL<<m)<=s) o=m; else x=m;
if(x-o==1) return o;
}
}
ll lsbit()const{ return bll(lsb()).msbit(); }
ll msb()const{ ll pos=msbit(); return (pos<0) ? 0LL : 1LL<<pos; }
ll lsb()const{ return s&-s; }
ll count()const{ return bitset<64>(s).count(); }
ll count(bll msk)const{ return (msk&s).count(); }
ll count(ll l,ll r)const{ return mask(l,r).count(); }
vector<ll> idxes()const{
vector<ll> v;
for(ll i=0,t=s; t; t>>=1,i++) if(t&1)v.push_back(i);
return v;
}
string to_string(ll wd=-1)const{
wd=max({wd,msbit()+1,1LL});
string ret;
for(ll i=wd-1;i>=0;--i) ret += '0'+char((s>>i)&1);
return ret;
}
private:
ll str2val(const string &bitstr){
ll val=0, len=(ll)bitstr.size();
for(ll i=0;i<len;++i) val|=ll(bitstr[i]-'0')<<(len-1-i);
return val;
}
};
template<class T> struct SET: set<T>{
using P=set<T>;
typename P::iterator it=P::end();
template<class...Args> SET(Args...args): P(args...){}
SET(initializer_list<T> a): P(a.begin(),a.end()){}
ll size() const { return (ll)P::size(); }
bool insert(const T &x){ bool r; tie(it,r)=P::insert(x); return r; }
template <class It> void insert(It st,It en){ P::insert(st,en); }
void insert(initializer_list<T> a){ P::insert(a.begin(),a.end()); }
template<class...A> bool emplace(A&&...a){ bool r; tie(it,r)=P::emplace(a...); return r; }
void eraseit(){ it=P::erase(it); }
void find(const T &x){ it=P::find(x); }
bool contains(const T &x){ return P::count(x)==1; }
void lower_bound(const T &x){ it=P::lower_bound(x); }
void upper_bound(const T &x){ it=P::upper_bound(x); }
bool isend() { return it==P::end(); }
T getit() { return *it; }
T next() { return *(++it); }
T prev() { return *(--it); }
bool nextok() { return !isend() && it!=--P::end(); }
bool prevok() { return it!=P::begin(); }
T front() { return *(it=P::begin()); }
T back() { return *(it=--P::end()); }
void pop_front(){ front(); eraseit(); }
void pop_back(){ back(); eraseit(); }
void push_front(const T &x){ it=P::insert(P::begin(),x); }
void push_back (const T &x){ it=P::insert(P::end(),x); }
void push_out(SET &b){ b.push_front(back()); pop_back(); }
void pull_in(SET &b){ push_back(b.front()); b.pop_front(); }
};
template<class T> struct cumulativesum{
using Int = long long;
using ll = long long;
ll n=0; vector<T> c;
cumulativesum():c(1){}
template<class S> cumulativesum(S &&v): n((ll)v.size()),c(n+1) { Ini(v); }
template<class S> void init(S &&v){ n=(ll)v.size(); c.resize(n+1); Ini(v); }
void add(T x) { n++; c.push_back(c.back()+x); }
T operator()(Int l,Int r){ return c[max(min(n,r+1),0LL)]-c[min(max(0LL,l),n)]; }
pair<Int,T> group(T i){
ll g=upper_bound(c.begin(),c.end(),i)-c.begin()-1;
T r = g>=0 ? i-c[g] : i;
return {g,r};
}
T mx(){//max
T mn=T(),samx=0;
for(ll i=1;i<=n;++i){
chmax(samx,c[i]-mn);
chmin(mn,c[i]);
}
return samx;
}
template<class S> void Ini(S &&v) { for(ll i=0;i<n;++i) c[i+1]=c[i]+v[i]; }
};
template<class S> cumulativesum(S) -> cumulativesum<typename remove_reference<S>::type::value_type>;
template<class T> vector<T> powers(T m,ll n){
vector<T> ret(n+1,1);
for(ll i=1;i<=n;++i) ret[i]=ret[i-1]*m;
return ret;
}
template <class T> auto runlength(T &&v){
vector<pair<typename remove_reference<T>::type::value_type,ll>> ret;
for(auto&&e:v){
if(ret.empty() or ret.back().first!=e) ret.emplace_back(e,1);
else ret.back().second++;
}
return ret;
}
inline vector<ll> str2num(string &s,char base,const string &etc){
vector<ll> v(s.size());
for(ll i=0;i<(ll)s.size();++i){
size_t pos=etc.find(s[i]);
if(pos==etc.npos) v[i]=s[i]-(ll)base;
else v[i]=-((ll)pos+1);
}
return v;
}
template<class T> struct combination{
vector<T> f,g; ll mxN=0;
combination(){}
combination(ll maxN): f(maxN+1,1),g(maxN+1),mxN(maxN) {
for (ll i=1;i<=mxN;++i) { f[i]=f[i-1]*i; }
g[mxN]=1/f[mxN];
for (ll i=mxN;i>=1;--i) { g[i-1]=g[i]*i; }
}
T P(ll n,ll r){ return (n<0 || r<0 || n<r) ? T(0) : f[n]*g[n-r]; } //nPr
T H(ll n,ll r){ return operator()(n+r-1,n-1); }//nHr
T inv(ll n) { return f[n-1] * g[n]; } //1/n
T fact(ll n) { return f[n]; } //n!
T finv(ll n) { return g[n]; } //1/n!
T operator()(ll n,ll r){
if (r<0) return 0;
if (n<0) return operator()(-n+r-1,r) * ((r&1)?-1:1); //-nr = (-1)^r * n+r-1r
if (n<r) return 0;
if (n<=mxN) return f[n]*g[n-r]*g[r]; //
//nrn-r
if (n-r<r) r=n-r;
T bunsi=1,bunbo=1;
for (ll i=0;i<r;++i) bunsi*=n-i;
for (ll i=0;i<r;++i) bunbo*=i+1;
return bunsi/bunbo;
}
template<class SP>
vector<T> CnLnR(long long nL,long long nR,long long r,SP sp){
if (nR-nL+1<=0) return vector<T>();
if (r<0) return vector<T>(nR-nL+1,0);
vector<T> v=sp(nL-r+1,nR-r+1,r);
for (T& e: v) e*=finv(r);
return v;
}
template<class SP>
vector<T> HrLrR(long long n,long long rL,long long rR,SP sp){//r<0
return CnLnR(n-1+rL,n-1+rR,n-1,sp);
}
};
template<class T> struct wrapVector1d{
using S=typename T::value_type;
using Int = long long;
const T *v;
S Ini;
wrapVector1d(const T &v_,S ini_=S()):v(&v_),Ini(ini_){}
S operator[](Int i)const{ return (i<0 || (Int)v->size()<=i) ? Ini : (*v)[i]; }
};
template<class T> struct wrapVector2d{
using S=typename T::value_type;
using Int = long long;
const vector<T> *v;
S Ini;
T dmy;
wrapVector2d(const vector<T> &v_,S ini_=S()):v(&v_),Ini(ini_){}
wrapVector1d<T> operator[](ll i)const{
return (i<0 || (Int)v->size()<=i) ?
wrapVector1d(dmy,Ini) : wrapVector1d((*v)[i],Ini);
}
};
namespace dumpstring{//dummy
inline string stringf(const char *format,...){
char bf[1000];
va_list ap;
va_start(ap,format);
vsprintf(bf,format,ap);
va_end(ap);
return string(bf);
}
template <class T> string stringfx(T x,int wd=1){ return ""; }
struct args{
using Int = long long;
args(){}
args &wd(Int wd__){ (void)wd__; return *this; }
args &sx(Int s){ (void)s; return *this; }
template<size_t DIM> args &rngs(array<array<Int,DIM>,2> rngs){ return *this; }
args &tr(vector<Int> tr__){ (void)tr__; return *this; }
args &tr(){ return *this; }
args &labels(vector<string> labels__){ (void)labels__; return *this; }
args &xrev(){ return *this; }
args &yrev(){ return *this; }
args &zrev(){ return *this; }
args &wrev(){ return *this; }
};
template<class NdT>
void dumpNd(const string &h,const NdT &fd,const args &p=args(),ostream &os=cerr){}
};
using dumpstring::stringf; using dumpstring::stringfx;
using dumpstring::args; using dumpstring::dumpNd;
#endif//end
template<class T> struct Vector: vector<T>{
using Int = long long;
using vT=vector<T>;
using cvT=const vector<T>;
using cT=const T;
using vT::vT; //
using vT::begin,vT::end,vT::insert,vT::erase;
auto it(Int i){ return begin()+i; }
auto it(Int i)const{ return begin()+i; }
Vector(cvT& b):vT(b){}
Vector(vT&& b):vT(move(b)){}
Vector(int n,cT& x):vT(n,x){}// ┬
Vector(long long n,cT& x):vT(n,x){}
template<class S> Vector(const Vector<S>& b):vT(b.begin(),b.end()){}
template<class S> Vector(const vector<S>& b):vT(b.begin(),b.end()){}
Vector(Int n,T s,T d){ iota(n,s,d); }
Vector(Int n,function<T(Int)> g):vT(n){ for(Int i=0;i<n;++i) (*this)[i]=g(i); }
Vector &operator+=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]+=b[i]; return *this; }
Vector &operator-=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]-=b[i]; return *this; }
Vector &operator*=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]*=b[i]; return *this; }
Vector &operator/=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]/=b[i]; return *this; }
Vector &operator%=(cvT &b){ assert(size()==b.size()); for(Int i=0;i<size();++i) (*this)[i]%=b[i]; return *this; }
Vector &operator+=(const Vector<T> &b){ return *this+=(cvT&)b; }
Vector &operator-=(const Vector<T> &b){ return *this-=(cvT&)b; }
Vector &operator*=(const Vector<T> &b){ return *this*=(cvT&)b; }
Vector &operator/=(const Vector<T> &b){ return *this/=(cvT&)b; }
Vector &operator%=(const Vector<T> &b){ return *this%=(cvT&)b; }
Vector operator+(cvT &b){ return Vector(*this)+=b; }
Vector operator-(cvT &b){ return Vector(*this)-=b; }
Vector operator*(cvT &b){ return Vector(*this)*=b; }
Vector operator/(cvT &b){ return Vector(*this)/=b; }
Vector operator%(cvT &b){ return Vector(*this)%=b; }
Vector operator+(const Vector<T> &b){ return Vector(*this)+=b; }
Vector operator-(const Vector<T> &b){ return Vector(*this)-=b; }
Vector operator*(const Vector<T> &b){ return Vector(*this)*=b; }
Vector operator/(const Vector<T> &b){ return Vector(*this)/=b; }
Vector operator%(const Vector<T> &b){ return Vector(*this)%=b; }
template<class S> Vector &operator+=(S x){ for(T &e: *this) e+=x; return *this; }
template<class S> Vector &operator-=(S x){ for(T &e: *this) e-=x; return *this; }
template<class S> Vector &operator*=(S x){ for(T &e: *this) e*=x; return *this; }
template<class S> Vector &operator/=(S x){ for(T &e: *this) e/=x; return *this; }
template<class S> Vector &operator%=(S x){ for(T &e: *this) e%=x; return *this; }
template<class S> Vector operator+(S x)const{ return Vector(*this)+=x; }
template<class S> Vector operator-(S x)const{ return Vector(*this)-=x; }
template<class S> Vector operator*(S x)const{ return Vector(*this)*=x; }
template<class S> Vector operator/(S x)const{ return Vector(*this)/=x; }
template<class S> Vector operator%(S x)const{ return Vector(*this)%=x; }
Vector &operator--(int){ return *this-=1; }
Vector &operator++(int){ return *this+=1; }
Vector operator-()const{ return Vector(*this)*=-1; }
template<class S> friend Vector operator-(S x,const Vector &a){ return -a+=x; }
Vector slice(Int l,Int r,Int d=1)const{
Vector ret;
for(Int i=l;(d>0&&i<=r)||(d<0&&r<=i);i+=d) ret.push_back((*this)[i]);
return ret;
}
Int size()const{ return (Int)vT::size(); }
Vector &push_back(cT& x,Int n=1){ for(Int i=0;i<n;++i){ vT::push_back(x); } return *this; }
Vector &pop_back(Int n=1){ for(Int i=0;i<n;++i){ vT::pop_back(); } return *this; }
Vector &push_front(cT& x,Int n=1){ this->insert(0,x,n); return *this; }
Vector &pop_front(Int n=1){ erase(0,n-1); return *this; }
T pull_back(){ T x=move(vT::back()); vT::pop_back(); return x; }
T pull_front(){ T x=move(vT::front()); erase(0); return x; }
Vector &insert(Int i,cT& x,Int n=1){ insert(it(i),n,x); return *this; }
Vector &insert(Int i,cvT& b){ insert(it(i),b.begin(),b.end()); return *this; }
Vector &erase(Int i){ erase(it(i)); return *this; }
Vector &erase(Int l,Int r){ erase(it(l),it(r+1)); return *this; }
Vector &concat(cvT &b,Int n=1){
cvT B = (&b==this) ? *this : vT{};
for(int i=0;i<n;++i) this->insert(size(),(&b==this)?B:b);
return *this;
}
Vector repeat(Int n){ return Vector{}.concat(*this,n); }
Vector &reverse(Int l=0,Int r=-1){ r+=r<0?size():0; std::reverse(it(l),it(r+1)); return *this; }
Vector &rotate(Int m){ return rotate(0,size()-1,m); }
Vector &rotate(Int l,Int r,Int m){ std::rotate(it(l),it(m),it(r+1)); return *this; }
Vector &sort(Int l=0,Int r=-1){ r+=r<0?size():0; std::sort(it(l),it(r+1)); return *this; }
Vector &rsort(Int l=0,Int r=-1){ return sort(l,r).reverse(l,r); }
template<class Pr> Vector &sort(Pr pr){ return sort(0,size()-1,pr); }
template<class Pr> Vector &sort(Int l,Int r,Pr pr){ std::sort(it(l),it(r+1),pr); return *this; }
template<int key> Vector &sortbykey(Int l=0,Int r=-1){
r+=r<0?size():0;
sort(l,r,[](cT &x,cT &y){return get<key>(x)<get<key>(y);});
return *this;
}
Vector &uniq(){ erase(unique(begin(),end()),end()); return *this; }
Vector &sortq(){ return sort().uniq(); }
Vector &fill(cT& x){ return fill(0,size()-1,x); }
Vector &fill(Int l,Int r,cT& x){ std::fill(it(l),it(r+1),x); return *this; }
template<class S=Int> Vector &iota(Int n,T s=0,S d=1){
vT::resize(n);
if(n==0) return *this;
(*this)[0]=s;
for(int i=1;i<n;++i) (*this)[i]=(*this)[i-1]+d;
return *this;
}
Int count(cT& x)const{ return count(0,size()-1,x); }
Int count(Int l,Int r,cT& x)const{ return Int(std::count(it(l),it(r+1),x)); }
template<class Pr> Int countif(Pr pr)const{ return countif(0,size()-1,pr); }
template<class Pr> Int countif(Int l,Int r,Pr pr)const{ return Int(count_if(it(l),it(r+1),pr)); }
Int find(cT& x)const{ return find(0,size()-1,x); }
Int find(Int l,Int r,cT& x)const{ return Int(std::find(it(l),it(r+1),x)-begin()); }
template<class Pr> Int findif(Pr pr)const{ return findif(0,size()-1,pr); }
template<class Pr> Int findif(Int l,Int r,Pr pr)const{ return Int(find_if(it(l),it(r+1),pr)-begin()); }
Vector<Int> findall(cT& x)const{ return findall(0,size()-1,x); }
Vector<Int> findall(Int l,Int r,cT& x)const{ return findallif(l,r,[&](cT& y){return y==x;}); }
template<class Pr> Vector<Int> findallif(Pr pr)const{ return findallif(0,size()-1,pr); }
template<class Pr> Vector<Int> findallif(Int l,Int r,Pr pr)const{
Vector<Int> ret;
for(Int i=l;i<=r;++i) if(pr((*this)[i])) ret.push_back(i);
return ret;
}
Int flooridx(cT& x)const{ return Int(upper_bound(begin(),end(),x)-begin()-1); }
Int ceilidx(cT& x)const{ return Int(lower_bound(begin(),end(),x)-begin()); }
Int leftnmof(cT& x)const{ return flooridx(x)+1; }
Int rightnmof(cT& x)const{ return size()-ceilidx(x); }
bool contains(cT& x)const{ Int i=flooridx(x); return i>=0 && (*this)[i]==x; }
template<class Pr> Int flooridx(cT& x,Pr pr)const{ return Int(upper_bound(begin(),end(),x,pr)-begin()-1); }
template<class Pr> Int ceilidx(cT& x,Pr pr)const{ return Int(lower_bound(begin(),end(),x,pr)-begin()); }
template<class Pr> Int leftnmof(cT& x,Pr pr)const{ return flooridx(x,pr)+1; }
template<class Pr> Int rightnmof(cT& x,Pr pr)const{ return size()-ceilidx(x,pr); }
template<class Pr> bool contains(cT& x,Pr pr)const{ Int i=flooridx(x,pr); return i>=0 && (*this)[i]==x; }
template<class S> using VV = Vector<Vector<S>>; template<class S> using sVV = vector<vector<S>>;
template<class S> using VVV = Vector<VV<S>>; template<class S> using sVVV = vector<sVV<S>>;
template<class S> using VVVV = Vector<VVV<S>>; template<class S> using sVVVV = vector<sVVV<S>>;
template<class S> using VVVVV = Vector<VVVV<S>>; template<class S> using sVVVVV = vector<sVVVV<S>>;
auto tostd()const{ return tov(*this); }
template <class S> static vector<S> tov(const Vector<S>&v){ return v; }
template <class S> static sVV<S> tov(const VV<S> &v){ sVV<S> ret; for(auto&& e:v) ret.push_back(e); return ret; }
template <class S> static sVVV<S> tov(const VVV<S> &v){ sVVV<S> ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; }
template <class S> static sVVVV<S> tov(const VVVV<S> &v){ sVVVV<S> ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; }
template <class S> static sVVVVV<S> tov(const VVVVV<S> &v){ sVVVVV<S> ret; for(auto&& e:v) ret.push_back(e.tostd()); return ret; }
};
/*
vll a={9,8,7},b={1,2,3};
vpll p={{5,3},{7,8},{0,2},};
- -------- --------
a+=x a-=x a*=x a/=x a%=x a+x a-x a*x a/x a%x -a x-a a++ a-- //∀i a[i]x
a+=b a-=b a*=b a/=b a%=b a+b a-b a*b a/b a%b //()
a.push_front(x,n); //n 1
a.push_back(x,n); //n 1
a.pop_front(n); //n 1
a.pop_back(n); //n 1
ll x=a.pull_front(); //pop_front()
ll x=a.pull_back(); //pop_back()
a.insert(i,x,n); //a[i]nx n1
a.insert(i,b); //a[i]vll b
a.erase(i); //a[i]
a.erase(l,r); //[l,r]
a.concat(b); //ab b=a
a.concat(b,n); //abn b=a
a.reverse(l,r); //[l,r] l,r
a.rotate(m); //a[m]rotate
a.rotate(l,r,m); //a[m]rotate [l,r]
a.sort(l,r); //[l,r] l,r
a.rsort(l,r); //[l,r] l,r
p.sort(l,r,[&](pll x,pll y){return x.second<y.second;});//sort l,r
a.uniq(); //1
a.sortq(); //
a.fill(l,r,x); //[l,r]x l,r
a.iota(n,s,d); //a n,s,d
vll a(n,s,d); //iota
vll b=a.slice(st,en,d); //a[st:en:d] d1
vll b=a.repeat(n); //an
- -------- --------
auto pr=[&](auto &x){ return x>0; }; //
ll m=a.count(x); //x
ll m=a.count(l,r,x); //xin[l,r]
ll m=a.countif(pr); //
ll m=a.countif(l,r,pr); //in[l,r]
ll i=a.find(x); //xi N()
ll i=a.find(l,r,x); //xi in[l,r] r+1
ll i=a.findif(pr); //i N()
ll i=a.findif(l,r,pr); //i in[l,r] r+1
vll is=a.findall(x); //xi
vll is=a.findall(l,r,x); //xiin[l,r]
vll is=a.findallif(pr); //i
vll is=a.findallif(l,r,pr); //iin[l,r]
- -------- sort --------
ll i=a.flooridx(x); //xi -1
ll i=a.ceilidx(x); //xi N()
ll m=a.leftnmof(x); //x
ll m=a.rightnmof(x); //x
bool b=a.contains(x); //x
- -------- prsort --------
auto pr=[&](auto &x,auto &y){ return x>y; }; //
ll i=a.flooridx(x,pr); //xi -1
ll i=a.ceilidx(x,pr); //xi N()
ll m=a.leftnmof(x,pr); //x
ll m=a.rightnmof(x,pr); //x
bool b=a.contains(x,pr); //x
a.concat(b,n).pop_back().rsort().uniq(); //
auto aa=a.tostd(); //NVectorNvector(N≦5)
*/
template<class T> struct wrapv: Vector<T>{
using Int = long long;
T def=T();
T defIF=T();
wrapv(const Vector<T> &b):Vector<T>(b){}
wrapv(Vector<T> &&b):Vector<T>(move(b)){}
wrapv(const std::vector<T> &b):Vector<T>(b){}
wrapv(std::vector<T> &&b):Vector<T>(move(b)){}
T &operator[](Int i){
return (i<0 || this->size()<=i) ? (defIF=def) : Vector<T>::operator[](i);
}
void setdef(const T& x){ def=x; }
};
/*
wrapv v=vll(N,0,1); //vll
v.setdef(INF); //
*/
#if 0
#define MODLL (1000000007LL)
#else
#define MODLL (998244353LL)
#endif
using mll = mll_<MODLL>;
//using mll = fraction;
// 
//
// 
vector<pll> dxys={{0,-1},{-1,0},{0,1},{1,0},};
namespace SolvingSpace{
template<class T> using vector = Vector<T>;
using vll=vector< ll>; using vmll=vector< mll>; using vdd=vector< dd>;
using vvll=vector< vll>; using vvmll=vector< vmll>; using vvdd=vector< vdd>;
using vvvll=vector< vvll>; using vvvmll=vector< vvmll>; using vvvdd=vector< vvdd>;
using vvvvll=vector<vvvll>; using vvvvmll=vector<vvvmll>; using vvvvdd=vector<vvvdd>;
using vpll=vector< pll>; using vtll=vector< tll>; using vqll=vector< qll>;
using vvpll=vector< vpll>; using vvtll=vector< vtll>; using vvqll=vector< vqll>;
using vll2=vector< ll2>; using vll3=vector< ll3>; using vll4=vector< ll4>;
using vvll2=vector< vll2>; using vvll3=vector< vll3>; using vvll4=vector< vll4>;
using vvvll2=vector<vvll2>; using vvvll3=vector< vvll3>; using vvvll4=vector<vvll4>;
using vss=vector<string>;
template<class T> vector<T> cinv(ll nm){ return vector<T>(nm,[](ll i){ (void)i; return cin1<T>(); }); }
template<class T> vector<vector<T>> cinvv(ll H,ll W){ return vector<vector<T>>(H,[&](ll i){ (void)i; return cinv<T>(W); }); }
#ifdef _MSC_VER
#include <intrin.h>
#endif
struct primefactorization{
using ull = unsigned long long;
ll fmax=0; //max
vll mnpr; //
vll primes; //
vpll pfact; // :{<2,3>,<3,1>,<5,2>}→2^3×3^1×5^2
vll divs; //
primefactorization(){} //
primefactorization(ll fmx){ init(fmx); } //使
void init(ll fmx){ //+
fmax=fmx;
mnpr.resize(fmx+1);
primes.reserve(fmx/10+1);
for(ll i=2; i<=fmax; i++){
if(mnpr[i]) continue;
primes.push_back(i);
mnpr[i]=i;
for(ll j=i*i; j<=fmax; j+=i) if(mnpr[j]==0) mnpr[j]=i;
}
}
vll &primelist(){ return primes; }
bool isprime(ll a){
if(a<=fmax) return mnpr[a]==a;
else return MillerRabin((ull)a);
}
vpll &operator()(ll a){//
return this->pfact=Factorization(a);
}
vll pfactlist(ll a){//()
(*this)(a);//
vll ret;
for(auto&&[p,_]:this->pfact) ret.push_back(p);
return ret;
}
/*!
@brief pfactdivs
@details e raise=truee
*/
static void divisorCore(const vpll &pfact,vll &divs,ll e=1,bool raise=false){
divs.assign(1,1);
for(auto [p,nm]: pfact){
ll prenm=(ll)divs.size();
for(int i=0;i<prenm*(nm/e);++i) divs.push_back(divs[i]*p);
}
if(raise){ //e
for(auto&& y: divs){
for(ll i=1,yorg=y;i<e;++i) y*=yorg;
}
}
}
vll &divisor(ll a,ll e=1,bool raise=false){// e
(*this)(a);//
divisorCore(this->pfact,this->divs,e,raise);//
return divs;
}
vpll Factorization(ll a){
if(a<(1LL<<31)) return FactorizationCore((int)a);
else return FactorizationCore(a);
}
template<class T> vpll FactorizationCore(T a){//
vpll ret;
if(a<=1) return ret;
if(a<=fmax){//→osa_k
for(; mnpr[a]!=a; a/=(T)mnpr[a]) Add(ret,mnpr[a]);
Add(ret,a);
return ret;
}
if(MillerRabin((ull)a)){//
ret.emplace_back(a,1);
return ret;
}
//
ll y=RhoAlgorithm((ull)a);
vpll ret1=Factorization(y);
vpll ret2=Factorization(a/y);
ll i=0,j=0,len1=(ll)ret1.size(),len2=(ll)ret2.size();
while(i<len1 || j<len2){
if(j==len2 || (i<len1 && ret1[i]<ret2[j])) AddBlock(ret,ret1[i++]);
else AddBlock(ret,ret2[j++]);
}
return ret;
}
bool MillerRabin(ull n){//true: http://miller-rabin.appspot.com/
auto modpow=[&](ull a,ull b,ull m){ //a^b (mod m)
ull r=1;
for(; b>0; b>>=1,a=ModMul(a,a,m)) if(b&1) r=ModMul(r,a,m);
return r;
};
auto f=[&](ull a){//true:false:
a%=n;
if(a==0) return true;
ull t=n-1,s=0;
while(t%2==0) t>>=1,s++;
ull x=modpow(a,t,n);
if(x==1 || x==n-1) return true;
for(ull r=1; r<s; ++r){
if((x=ModMul(x,x,n))==n-1) return true;
}
return false;
};
if(n<=1) return false;
if(n==2) return true;
if(n%2==0) return false;
if(n<4759123141) return f(2)&&f(7)&&f(61);
return f(2)&&f(325)&&f(9375)&&f(28178)&&f(450775)&&f(9780504)&&f(1795265022);
}
ll RhoAlgorithm(ull n){//1 NG()
if((n&1)==0) return 2;
for(ull c=1,x=1;;++c){
auto f=[&](ull x){ return (ModMul(x,x,n)+c)%n; };
ull y=x,g=1;
while(g==1){
x=f(x);
y=f(f(y));
g=gcd(abs(ll(x-y)),n);
}
if(g<n) return (ll)g;
}
}
void AddBlock(vpll &v,pll &p){
if(!v.empty() and v.back().first==p.first) v.back().second+=p.second;
else v.push_back(p);
}
void Add(vpll &v,ll x){
if(!v.empty() and v.back().first==x) v.back().second++;
else v.emplace_back(x,1);
}
inline ull ModMul(ull a,ull b,ull m){ //a*b%m
if(a < 1ULL<<32 && b < 1ULL<<32) return a*b%m;
#ifdef _MSC_VER
ull upper,lower,rem;
lower=_umul128(a,b,&upper);
_udiv128(upper,lower,m,&rem);
return rem;
#else
return (ull)((unsigned __int128)(a)*b%m);
#endif
}
};
/*
- -------- -------- M:
primefactorization pr;
primefactorization pr(M);
- -------- -------- 使
bool b=pr.isprime(x);
- -------- -------- {2,3,5,7,11,…}
vll &primes=pr.primelist();
- -------- --------
vpll &pfact=pr(x);
. ↑: x=1 → {}
. x=2 → {<2,1>} //2^1
. x=600→ {<2,3>,<3,1>,<5,2>} //2^3×3^1×5^2
- -------- () -------- :x=600→{2,3,5} (600=2^3×3^1×5^2)
vll plist=pr.pfactlist(x);
- -------- -------- :x=12→{1,2,4,3,6,12}
vll &div=pr.divisor(x);
vll &div=pr.divisor(x,e); //e
vll &div=pr.divisor(x,e,true); //e
*/
namespace baseNspace{
using Int=long long;
using ll=long long;
vector<Int> to_vector(ll x,bool rev=false,Int d=10){
vector<Int> dgs;
for(; x>0; x/=d) dgs.push_back(Int(x%d));
if(!rev) reverse(dgs.begin(),dgs.end());
return dgs;
}
ll vtoll(const vector<Int> &v,Int d=10){
ll x=0;
for(Int dg:v) x=x*d+dg;
return x;
};
string v_to_string(const vector<Int> &v){
if(v.empty()) return "0";
string s;
for(auto&& e: v) s += e<10 ? char(e+'0') : char(e-10+'A');
return s;
}
vector<Int> s_to_vector(const string &s){
vector<Int> dgs;
if(s=="0") return dgs;
for(auto&& c: s) dgs.push_back(c<='9' ? Int(c-'0') : Int(c-'A')+10);
return dgs;
}
string to_string(ll x,bool rev,Int d){ //overload
return v_to_string(to_vector(x,rev,d));
}
template<ll d> struct basen{
ll x=0;
basen(){}
basen(ll x): x(x){}
basen(int x): x(x){}
basen(const char *s){ fromString(s); }
basen(const string &s){ fromString(s); }
Int operator[](Int i)const{
ll y = valid(i+1) ? x%bases[i+1] : x;
return valid(i) ? Int(y/bases[i]) : Int(0);
}
operator Int()const{ return Int(x); }
basen operator++(int){ basen b(*this); x++; return b; }
basen operator--(int){ basen b(*this); x--; return b; }
basen &operator+=(Int b){ x+=b; return *this; }
basen &operator-=(Int b){ x-=b; return *this; }
basen operator+(ll b)const{ return x+b; }
basen operator-(ll b)const{ return x-b; }
basen operator+(int b)const{ return x+b; }
basen operator-(int b)const{ return x-b; }
basen operator+(const basen &b)const{ return x+b.x; }
basen operator-(const basen &b)const{ return x-b.x; }
basen &seteq(Int i,Int dg){ assert(valid(i)); return addeq(i,dg-(*this)[i]); }
basen &addeq(Int i,Int dg){ assert(valid(i)); x+=dg*bases[i]; return *this; }
[[nodiscard]] basen set(Int i,Int dg)const{ return basen(*this).seteq(i,dg); }
[[nodiscard]] basen add(Int i,Int dg)const{ return basen(*this).addeq(i,dg); }
static void setbase(const vector<Int> &v){
for(auto&& x: v) bases.push_back(bases.back()*x);
}
Int ndigits()const{//
for(Int ng=-1,ok=(Int)bases.size();;){
Int m=(ng+ok)/2;
if(bases[m]>x) ok=m; else ng=m;
if(ok-ng==1) return ok;
}
}
string to_string(Int wd=-1)const{
wd=max({wd,ndigits(),1LL});
string ret;
for(ll i=wd-1;i>=0;--i) ret += '0'+char((*this)[i]);
return ret;
}
private:
static vector<ll> setbaseD(){
vector<ll> ret{1};
if(d>=2) while(ret.back()<=LLONG_MAX/d) ret.push_back(ret.back()*d);
return ret;
}
bool valid(Int i)const{ return i<(Int)bases.size(); }
void fromString(const string &s){
ll N=(ll)s.size();
for(ll i=0;i<N;++i) addeq(i,s[N-1-i]-'0');
}
static inline vector<ll> bases = setbaseD();
};
}
using baseNspace::to_vector; using baseNspace::v_to_string; using baseNspace::vtoll;
using baseNspace::to_string; using baseNspace::s_to_vector;
using std::to_string;
using baseNspace::basen;
/*
- ---------------- llvllstring d ----------------
ll:10string,vll:d
ll 3041 ⇔ vll {3,0,4,1} ⇔ string "3041" (10)
ll 0 ⇔ vll {} ⇔ string "0" (10)
ll 12 ⇔ vll {1,1,0,0} ⇔ string "1100" (2)
ll 46 ⇔ vll {2,14} ⇔ string "2E" (16)
- -------- ll→vll to_vector --------
vll dgs=to_vector(x);
vll dgs=to_vector(x,true);
. reverse
vll dgs=to_vector(x,false,d);
. ↑d 10
- -------- vll→ll vtoll --------
ll x=vtoll(dgs);
ll x=vtoll(dgs,d);
. ↑d 10
- -------- string→vll s_to_vector --------
vll dgs=s_to_vector(s);
- -------- vll→string v_to_string --------
string s=v_to_string(dgs);
- -------- ll→string -------- std::to_stringoverload
string s=to_string(x);
. ↑1std::to_string
string s=to_string(x,false,d);
. ↑d
string s=to_string(x,true,d);
. reverse
- -------- string→ll -------- std::stoll使
ll x=stoll(s);
ll x=stoll(s,nullptr,d);
. ↑d
- ---------------- lld ----------------
- -------- --------
using base=basen<d>; //d
using base=basen<-1>; //┬
base::setbase(v); //┘ i[0,v[i])
base b=x; //
base b="101"; //
- -------- --------
ll dg=base(x)[i]; //xi
base b=x;
ll n=b.ndigits(); // 201(3)3
b.seteq(i,dg); //idg
b.addeq(i,dg); //idg
base bb=b.set(i,dg); //idg
base bb=b.add(i,dg); //idg
ll y=base(x).set(i,dg); //ll()
b+=x b-=x b++ b--
b+x b-x //base
(b==x b!=x) //llcast
string s=b.to_string(); //
string s=b.to_string(6); // (0)
*/
#ifdef _MSC_VER
struct ll128{
using ull=unsigned long long;
int sign=1; //+1:-1:
ull upper=0,lower=0; //64bit64bit
ll128(){}
template<integral T> ll128(T x):sign(x>=0 ? 1 : -1),lower(ull(abs(x))){}
operator ll()const{ assert(upper==0 && (lower>>63)==0); return sign*ll(lower); }
template<integral T> ll128 operator+(T b)const{ return *this+ll128(b); }
template<integral T> ll128 operator-(T b)const{ return *this-ll128(b); }
template<integral T> ll128 operator*(T b)const{ return *this*ll128(b); }
template<integral T> ll128 operator/(T b)const{ return *this/ll128(b); }
template<integral T> ll128 operator%(T b)const{ return *this%ll128(b); }
template<integral T> ll128 operator+=(T b){ return *this+=ll128(b); }
template<integral T> ll128 operator-=(T b){ return *this-=ll128(b); }
template<integral T> ll128 operator*=(T b){ return *this*=ll128(b); }
template<integral T> ll128 operator/=(T b){ return *this/=ll128(b); }
template<integral T> ll128 operator%=(T b){ return *this%=ll128(b); }
template<integral T> friend ll128 operator+(T a,ll128 b){ return b+a; }
template<integral T> friend ll128 operator-(T a,ll128 b){ return -b+a; }
template<integral T> friend ll128 operator*(T a,ll128 b){ return b*a; }
template<integral T> friend ll128 operator/(T a,ll128 b){ return ll128(a)/b; }
ll128 operator+(ll128 b)const{ return ll128(*this)+=b; }
ll128 operator-(ll128 b)const{ return ll128(*this)-=b; }
ll128 operator*(ll128 b)const{ return ll128(*this)*=b; }
ll128 operator/(ll128 b)const{ return ll128(*this)/=b; }
ll128 operator%(ll128 b)const{ return ll128(*this)%=b; }
ll128 operator-()const{ ll128 ret(*this); ret.sign*=-1; return ret; }
ll128 &operator+=(ll128 b){
//
if(sign==b.sign) tie(upper,lower)=addNoSign(*this,b);
else if(geNoSign(*this,b)) tie(upper,lower)=subNoSign(*this,b);
else tie(upper,lower)=subNoSign(b,*this),sign=-sign;
return *this;
}
ll128 &operator-=(ll128 b){
return (*this)+=(-b);
}
ll128 &operator*=(ll128 b){
sign*=b.sign;
ull ansu,ansl;
ansl=_umul128(lower,b.lower,&ansu);
//overflow
ansu+=upper*b.lower;
ansu+=lower*b.upper;
tie(upper,lower)={ansu,ansl};
return *this;
}
ll128 &operator/=(ll128 b){//b64bit
sign*=b.sign;
ull q = _udiv128(upper,lower,b.lower,nullptr);
upper=0,lower=q;
return *this;
}
ll128 &operator%=(ll128 b){//b64bit
sign*=b.sign;
ull rem;
_udiv128(upper,lower,b.lower,&rem);
upper=0,lower=rem;
return *this;
}
bool operator==(ll128 b)const{
return sign==b.sign && upper==b.upper && lower==b.lower;
}
bool operator!=(ll128 b)const{ return !(*this==b); }
bool operator<(ll128 b)const{
return sign<b.sign || //
(sign==1 && b.sign==1 && !geNoSign(*this,b)) || //
(sign==-1 && b.sign==-1 && !geNoSign(b,*this)); //
}
bool operator> (ll128 b)const{ return b<*this; }
bool operator>=(ll128 b)const{ return !(*this<b); }
bool operator<=(ll128 b)const{ return b>=*this; }
private:
static pair<ull,ull> addNoSign(ll128 a,ll128 b){//
ull u=a.upper,l=a.lower,u2=b.upper,l2=b.lower;
return {u+u2+(l>~l2),l+l2}; //overflow l+l2>all1 → l>all1-l2=~l2
}
static pair<ull,ull> subNoSign(ll128 a,ll128 b){//,a≧b
ull u=a.upper,l=a.lower,u2=b.upper,l2=b.lower;
return {u-u2-(l<l2),l-l2};
}
static bool geNoSign(ll128 a,ll128 b){//true: a≧b
ull u=a.upper,l=a.lower,u2=b.upper,l2=b.lower;
return u>u2 || (u==u2 && l>=l2);
}
};
#else
using ll128=__int128_t;
#endif
namespace kenchon{
#if 0
// a^b
long long modpow(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
#else
template<class T> ll modpow(ll a,ll x,ll M){
ll r=1;
for(; x>0; x>>=1,a=T(a)*a%M) if(x&1) r=T(r)*a%M;
return r;
}
/*
- ---- a^x mod M ----
ll b=modpow<ll> (a,x,M); //a M 31bit
ll b=modpow<ll128>(a,x,M); //a or M 32bit
*/
#endif
// a^-1
long long modinv(long long a, long long m) {
long long b = m, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
// a^x ≡ b (mod. m) x mlong long
long long modlog(long long a, long long b, ll m) {
a %= m, b %= m;
// calc sqrt{M}
long long lo = -1, hi = m;
while (hi - lo > 1) {
long long mid = (lo + hi) / 2;
if (mid * mid >= m) hi = mid;
else lo = mid;
}
long long sqrtM = hi;
// {a^0, a^1, a^2, ..., a^sqrt(m)}
map<long long, long long> apow;
long long amari = a;
for (long long r = 1; r < sqrtM; ++r) {
if (!apow.count(amari)) apow[amari] = r;
//(amari *= a) %= m;
amari=ll128(amari)*a%m;
}
// check each A^p
//long long A = modpow(modinv(a, m), sqrtM, m);
long long A = modpow<ll128>(modinv(a, m), sqrtM, m);
amari = b;
for (long long q = 0; q < sqrtM; ++q) {
if (amari == 1 && q > 0) return q * sqrtM;
else if (apow.count(amari)) return q * sqrtM + apow[amari];
//(amari *= A) %= m;
amari=ll128(amari)*A%m;
}
// no solutions
return -1;
}
}//namespace
using kenchon::modlog;
ll modinv(ll a,ll M){//a^-1 modM aM
ll b=M,u=1,v=0;
while(b){
ll t=a/b;
a-=t*b, swap(a,b);
u-=t*v, swap(u,v);
}
u %= M;
if (u<0) u+=M;
return u;
}
template<class T> ll modpow(ll a,ll x,ll M){
ll r=1;
for(; x>0; x>>=1,a=T(a)*a%M) if(x&1) r=T(r)*a%M;
return r;
}
/*
- ---- a^x mod M ----
ll b=modpow<ll> (a,x,M); //a M 31bit
ll b=modpow<ll128>(a,x,M); //a or M 32bit
*/
template<class T,class Func>
ll getOrder(ll a,ll m,const vector<ll> &plist,Func getPFactList){
assert(m>=2);
//a^φ(m)=1(mod m)φ(m)調
ll phi=m;
for(auto&& p: plist){
assert(a%p!=0); //gcd(a,m)==1
phi=phi/p*(p-1);
}
vector<ll> plistOfPhi=getPFactList(phi); //φ(m)
ll ord=phi;
for(auto&& p: plistOfPhi){
while(ord%p==0 && modpow<T>(a,ord/p,m)==1) ord/=p;
}
return ord;
}
/*
- ---- ma (a^x≡1(mod m)x) ----
auto getPFactList=[&](ll x){ return primefactorization().pfactlist(x); };
ll x=getOrder<ll> (a,m, getPFactList(m), getPFactList); //a m 31bit
ll x=getOrder<ll128>(a,m, getPFactList(m), getPFactList); //a or m 32bit
. m()↑ ↑m
*/
void cin2solve()
{
#if 0
{//getOrdertest
rep(m,2,100){
vll plist=pr.pfactlist(m);
rep(a,1,m-1){
if(gcd(a,m)!=1) continue;
auto getPFactList=[&](ll x){ return primefactorization().pfactlist(x); };
ll ord=getOrder<ll>(a,m,plist,getPFactList);
cout << a << ' ' << m << ' ' << ord << endl;
assert(modpow<ll>(a,ord,m)==1);
rep(i,1,ord-1) assert(modpow<ll>(a,i,m)!=1);
}
}
rep (m,2,10000){
ll a=10;
if(gcd(a,m)!=1) continue;
auto getPFactList=[&](ll x){ return primefactorization().pfactlist(x); };
ll ord=getOrder<ll>(a,m,getPFactList(m),getPFactList);
cout << a << ' ' << m << ' ' << ord << endl;
assert(modpow<ll>(a,ord,m)==1);
rep(i,1,ord-1) assert(modpow<ll>(a,i,m)!=1);
}
}
#endif
auto N=cin1<ll>();
ll m=N;
ll x=0;
while(m%2==0)m/=2,x++;
ll y=0;
while(m%5==0)m/=5,y++;
assert(!(x>0 and y>0));
ll tei,z;
if(x>0) tei=2,z=x;
else tei=5,z=y;
ll tz=Pow(tei,z);
string sR=to_string(tz);
reverse(all(sR));
sR.resize(z,'0');
ll R = sR.empty() ? 0 : stoll(sR);
ll S=z;
auto ansreverse=[](vector<pair<string,ll>> &ans){
ans.reverse();
for(auto&&[s,k]: ans) reverse(all(s));
};
vector<pair<string,ll>> ans;
if(N==1){
cout << 1 << '\n';
cout << "1 1" << '\n';
return;
}
if(m==1){
ans.push_back({sR,1});
auto tmp=ans;
ansreverse(tmp);
ans.concat(tmp);
cout << sz(ans) << '\n';
for(auto&& e: ans) cout << e << '\n';
return;
}
auto getPFactList=[&](ll x){ return primefactorization().pfactlist(x); };
ll ord=getOrder<ll128>(10,m, getPFactList(m), getPFactList);
#if defined(_DEBUG)
ll M=5;
ll MM=1;//
#else
ll M=90000;
ll MM=4;//
#endif
if(ord<=M){
ll L=ord*(m/2)*2+1+S;
ll hoinv=modinv(10/tei,m);
ll hoinvz=modpow<ll128>(hoinv,z,m);
ll tenL=modpow<ll128>(10,L-z,m);
ll D = Mod(-hoinvz-ll(ll128(R)*tenL%m), m);
if(z==0) D=m;
//ans
if (!sR.empty()) ans.push_back({sR,1});
ans.push_back({string("1")+string(ord-1,'0'),D/2});
if(ans.back().second==0) ans.pop_back();
ans.push_back({"0",ord*(m/2-D/2)});
if(ans.back().second==0) ans.pop_back();
auto tmp=ans;
ansreverse(tmp);
ans.push_back({string(1,char('0'+D%2)),1});
ans.concat(tmp);
}
else{
ll L=ord*(M+2)+1+S;
ll hoinv=modinv(10/tei,m);
ll hoinvz=modpow<ll128>(hoinv,z,m);
ll tenL=modpow<ll128>(10,L-z,m);
ll D = Mod(-hoinvz-ll(ll128(R)*tenL%m), m);
if(z==0) D=m;
using base=basen<10>;
auto hanbunzenrekkyo=[&](){
//seeds
vll seeds(MM*2+1);//seeds[i=1~MM*2] 10^i%m+10^(-i)%m
ll teninv=modinv(10,m);
rep(i,1,MM*2){
seeds[i]=Mod(modpow<ll128>(10,i,m)+modpow<ll128>(teninv,i,m),m);
}
//map
map<ll,ll> mp;
rep(b,0,Pow(10,MM)-1){
ll x=0;
rep(kt,0,MM-1) x+=seeds[kt+1]*base(b)[kt];
x=Mod(x-D,m);
mp[x]=b;
}
//
ll mind=INF,minpreb=-1,aftb=-1;
const int margin=2;
rep(b,0,Pow(10,MM)-1){
ll va=0;
rep(kt,0,MM-1) va+=seeds[kt+1+MM]*base(b)[kt];
va%=m;
//x+vam key=m-vax
ll key=m-va-margin;
auto it=mp.upper_bound(key);
if(it!=mp.begin()) it--;
auto[x,preb]=*it;
ll d=key-x;
if(d<0)continue;
if(chmin(mind,d)) minpreb=preb,aftb=b;
}
assert(mind!=INF);
//ll preb=mp[/*minva-mind*/];
ll retb=aftb*Pow(10,MM)+minpreb;
return pll(retb,mind+margin);
};
auto[retb,sa]=hanbunzenrekkyo();
if(sa>(M+1)*9) assert(sa<=(M+1)*9); //2~(M+1)*9
//ans
if (!sR.empty()) ans.push_back({sR,1});
rep(times,M/2){
ll dg=min(sa/2,9ll);
sa-=2*dg;
ans.push_back({string(1,'0'+(char)dg), 1});
//bool on=(sa>=2);
//sa-=2*on;
//ans.push_back({string(1,char('0'+on)), 1});
ans.push_back({"0", ord-1});
}
assert(sa<=9);
ans.push_back({"0",ord-1-MM*2 +1});
ans.push_back({base(retb).to_string(MM*2),1});
auto tmp=ans;
ansreverse(tmp);
ans.push_back({string(1,char('0'+sa)),1});
ans.concat(tmp);
}
cout << sz(ans) << '\n';
for(auto&& e: ans) cout << e << '\n';
return;
}
void cin2solveold2()
{
auto N=cin1<ll>();
ll m=N;
ll x=0;
while(m%2==0)m/=2,x++;
ll y=0;
while(m%5==0)m/=5,y++;
assert(!(x>0 and y>0));
ll tei,z;
if(x>0) tei=2,z=x;
else tei=5,z=y;
auto calck=[&](ll c)->pair<string,ll>{
ll cz=c*Pow(tei,z);
string sR=to_string(cz);
reverse(all(sR));
ll R=stoll(sR);
if(R%N==0 and cz%N==0){
return {sR,sz(sR)+1};
}
else if(R%N==0) return {sR,-1};
ll g=gcd(R,m);
if (c%g!=0) return {sR,-1};
ll RR=R/g;
ll cc=c/g;
ll mm=m/g;
ll Rinv=modinv(RR,mm);
ll ho=10/tei;
ll hoinv=modinv(ho,mm);
ll hoinvz=modpow<ll128>(hoinv,z,mm);
ll128 tmp=cc;
tmp=tmp*Rinv%mm;
tmp=tmp*hoinvz%mm;
ll sinsu=tmp;
sinsu=Mod(-sinsu,mm);
ll kk=modlog(10,sinsu,mm);
if (kk==-1) return {sR,-1};
return {sR,kk+z};
};
rep(c,1,INF-1){
auto[sR,k]=calck(c);
if(k==-1) continue;
if(k<=sz(sR))continue;
{
cout << 3 << '\n';
cout << sR << ' ' << 1 << '\n';
cout << pll(0,k-sz(sR)) << '\n';
string t=sR;
reverse(all(t));
cout << t << ' '<< 1 << endl;
break;
}
}
}
void cin2solveold()
{
auto N=cin1<ll>();
ll p=N;
ll x=0;
while(p%2==0)p/=2,x++;
ll y=0;
while(p%5==0)p/=5,y++;
assert(!(x>0 and y>0));
auto func=[](ll tei,ll z,ll p)->pair<string,ll>{
ll ho=10/tei;
rep(c,1,INF-1){
//c,R
string s=to_string(Pow(tei,z)*c);
reverse(all(s));
ll R=stoll(s);
//if(gcd(R,p)==1){ c=b;break; }
if(gcd(R,p)!=1)continue;
//modlog
ll hoinv=modinv(ho,p);
ll homx=modpow<ll128>(hoinv,z,p);
ll Rinv=modinv(R,p);
ll128 uhen=homx;
uhen*=Rinv;
uhen%=p;
uhen*=c;
uhen%=p;
ll uhe=uhen;
uhe*=-1;
uhe=Mod(uhe,p);
ll kk=modlog(10,uhe,p); //-1:
if(kk==-1)continue;
ll k=kk+z;
if(k<=sz(s))continue;
return {s,k};
}
assert(false);return {"",0ll};
};
auto output=[&](string s,ll k){
cout << 3 << '\n';
cout << s << ' ' << 1 << '\n';
cout << pll(0,k-sz(s)) << '\n';
string t=s;
reverse(all(t));
cout << t << ' '<< 1 << endl;
};
if(x>0){
auto[s,k]=func(2,x,p);
output(s,k);
}
else{
auto[s,k]=func(5,y,p);
output(s,k);
}
return;
}
}//SorvingSpace
//////////////////////////////////////////
int main(){
#if 1
//SolvingSpace::labo();
SolvingSpace::cin2solve();
//SolvingSpace::generand();
#else
ll t; cin >> t;
rep(i,0,t-1){
SolvingSpace::cin2solve();
//SolvingSpace::generand();
}
#endif
cerr << timeget() <<"ms"<< '\n';
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0