結果

問題 No.3038 シャッフルの再現
ユーザー lam6er
提出日時 2025-03-26 15:49:03
言語 PyPy3
(7.3.15)
結果
RE  
実行時間 -
コード長 3,909 bytes
コンパイル時間 418 ms
コンパイル使用メモリ 82,176 KB
実行使用メモリ 68,864 KB
最終ジャッジ日時 2025-03-26 15:50:07
合計ジャッジ時間 2,895 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample RE * 1
other RE * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
import random
from math import gcd
MOD = 10**9 + 7
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = {}
small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
for p in small_primes:
if n % p == 0:
cnt = 0
while n % p == 0:
cnt += 1
n = n // p
factors[p] = cnt
if n == 1:
return factors
if is_prime(n):
factors[n] = 1
return factors
def _factor(n):
if n == 1:
return {}
if is_prime(n):
return {n: 1}
d = pollards_rho(n)
a = _factor(d)
b = _factor(n // d)
res = {}
for p in a:
res[p] = a[p]
for p in b:
if p in res:
res[p] += b[p]
else:
res[p] = b[p]
return res
remaining_factors = _factor(n)
for p in remaining_factors:
factors[p] = factors.get(p, 0) + remaining_factors[p]
return factors
def generate_divisors(factors_dict):
divisors = [1]
for p in sorted(factors_dict.keys()):
exp = factors_dict[p]
current_powers = [p**e for e in range(exp+1)]
new_divisors = []
for d in divisors:
for power in current_powers:
new_divisors.append(d * power)
divisors = list(set(new_divisors))
divisors = sorted(divisors)
return divisors
def fib_pair(n, mod):
if n == 0:
return (0, 1)
a, b = fib_pair(n // 2, mod)
c = (a * (2 * b - a)) % mod
d = (a * a + b * b) % mod
if n % 2 == 0:
return (c, d)
else:
return (d, (c + d) % mod)
def compute_pisano_period(p):
if p == 5:
return 20
mod5 = p % 5
if mod5 in (1, 4):
base = p - 1
else:
base = 2 * (p + 1)
factors = factor(base)
divisors = generate_divisors(factors)
for d in sorted(divisors):
if d == 0:
continue
fn, fn_plus_1 = fib_pair(d, p)
if fn == 0 and fn_plus_1 == 1 % p:
return d
return base
def main():
input = sys.stdin.read().split()
ptr = 0
N = int(input[ptr])
ptr += 1
lcm_factors = {}
for _ in range(N):
p = int(input[ptr])
ptr += 1
k = int(input[ptr])
ptr += 1
pisano_p = compute_pisano_period(p)
factors_pisano = factor(pisano_p)
if p in factors_pisano:
factors_pisano[p] += (k - 1)
else:
factors_pisano[p] = (k - 1)
for p_factor, exp in factors_pisano.items():
if p_factor in lcm_factors:
if exp > lcm_factors[p_factor]:
lcm_factors[p_factor] = exp
else:
lcm_factors[p_factor] = exp
result = 1
for p, exp in lcm_factors.items():
result = (result * pow(p, exp, MOD)) % MOD
print(result)
if __name__ == '__main__':
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0