結果

問題 No.2366 登校
ユーザー lam6er
提出日時 2025-03-26 15:54:18
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 180 ms / 4,000 ms
コード長 5,153 bytes
コンパイル時間 233 ms
コンパイル使用メモリ 81,920 KB
実行使用メモリ 79,620 KB
最終ジャッジ日時 2025-03-26 15:55:10
合計ジャッジ時間 3,895 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 25
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import heapq
def main():
import sys
input = sys.stdin.read().split()
idx = 0
N = int(input[idx]); idx +=1
M = int(input[idx]); idx +=1
K = int(input[idx]); idx +=1
T = int(input[idx]); idx +=1
magic = {}
for _ in range(K):
A = int(input[idx])-1; idx +=1
B = int(input[idx])-1; idx +=1
C = int(input[idx]); idx +=1
D = int(input[idx]); idx +=1
magic[(A,B)] = (C, D)
# Directions: up, down, left, right
dirs = [(-1,0), (1,0), (0,-1), (0,1)]
# For each cell (i,j), keep a list of (time, fatigue) sorted by time
state = [[[] for _ in range(M)] for _ in range(N)]
heap = []
heapq.heappush(heap, (0, 0, 0, 0)) # (fatigue, time, i, j)
state[0][0].append( (0, 0) )
found = False
answer = -1
while heap:
d, t, i, j = heapq.heappop(heap)
if i == N-1 and j == M-1:
if t <= T:
answer = d
found = True
break
else:
continue
# If this state is outdated, skip
current_list = state[i][j]
# Binary search to check if this state is valid
left, right = 0, len(current_list)
while left < right:
mid = (left + right) // 2
if current_list[mid][0] <= t:
left = mid +1
else:
right = mid
pos = left -1
if pos <0 or current_list[pos][1] < d:
continue
# Generate moves
for di, dj in dirs:
ni = i + di
nj = j + dj
if 0<=ni<N and 0<=nj<M:
new_time = t +1
new_d = d
# Check if this state can be added to ni, nj
target_list = state[ni][nj]
insert_pos = len(target_list)
for idx_in_list in range(len(target_list)):
ct, cd = target_list[idx_in_list]
if ct <= new_time and cd <= new_d:
insert_pos = -1
break
if ct >= new_time:
insert_pos = idx_in_list
break
if insert_pos == -1:
continue
# Now check from insert_pos backwards
new_entries = []
added = False
# Check previous entries
if insert_pos >0:
prev_t, prev_d = target_list[insert_pos-1]
if prev_t <= new_time and prev_d <= new_d:
continue
# Remove all entries after insert_pos that have time >= new_time and d >= new_d
start = insert_pos
while start < len(target_list):
ct, cd = target_list[start]
if ct < new_time:
start +=1
continue
if cd >= new_d:
break
else:
start +=1
# The entries from insert_pos to start-1 are to be removed
# The new entry is (new_time, new_d)
# So, target_list becomes target_list[:insert_pos] + [new_entry] + target_list[start:]
new_entry = (new_time, new_d)
new_target_list = target_list[:insert_pos] + [new_entry] + target_list[start:]
state[ni][nj] = new_target_list
heapq.heappush(heap, (new_d, new_time, ni, nj))
# Check if current cell is magic
if (i,j) in magic:
C, D_val = magic[(i,j)]
new_time = t - C +1
new_d = d + D_val
# Check if this state can be added to i,j
target_list = state[i][j]
insert_pos = len(target_list)
for idx_in_list in range(len(target_list)):
ct, cd = target_list[idx_in_list]
if ct <= new_time and cd <= new_d:
insert_pos = -1
break
if ct >= new_time:
insert_pos = idx_in_list
break
if insert_pos == -1:
continue
# Check previous entries
added = False
if insert_pos >0:
prev_t, prev_d = target_list[insert_pos-1]
if prev_t <= new_time and prev_d <= new_d:
continue
# Remove entries that are dominated
start = insert_pos
while start < len(target_list):
ct, cd = target_list[start]
if ct < new_time:
start +=1
continue
if cd >= new_d:
break
else:
start +=1
new_entry = (new_time, new_d)
new_target_list = target_list[:insert_pos] + [new_entry] + target_list[start:]
state[i][j] = new_target_list
heapq.heappush(heap, (new_d, new_time, i, j))
print(answer if found else -1)
if __name__ == '__main__':
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0