結果

問題 No.422 文字列変更 (Hard)
ユーザー lam6er
提出日時 2025-03-26 15:55:30
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 612 ms / 3,000 ms
コード長 3,648 bytes
コンパイル時間 401 ms
コンパイル使用メモリ 82,416 KB
実行使用メモリ 145,764 KB
最終ジャッジ日時 2025-03-26 15:56:27
合計ジャッジ時間 8,925 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 16
権限があれば一括ダウンロードができます

ソースコード

diff #

n, m = map(int, input().split())
S = input().strip()
T = input().strip()

INF = float('inf')

# Initialize DP tables
M = [[INF] * (m + 1) for _ in range(n + 1)]
I = [[INF] * (m + 1) for _ in range(n + 1)]
D = [[INF] * (m + 1) for _ in range(n + 1)]

M[0][0] = 0  # Base case: no characters processed

for i in range(n + 1):
    for j in range(m + 1):
        if i == 0 and j == 0:
            continue
        
        # Update M[i][j] (match or substitution)
        if i > 0 and j > 0:
            cost = 0 if S[i-1] == T[j-1] else 5
            prev_min = min(M[i-1][j-1], I[i-1][j-1], D[i-1][j-1])
            if prev_min + cost < M[i][j]:
                M[i][j] = prev_min + cost
        
        # Update I[i][j] (insertion)
        if j > 0:
            candidates = []
            if I[i][j-1] != INF:
                candidates.append(I[i][j-1] + 2)
            if M[i][j-1] != INF:
                candidates.append(M[i][j-1] + 9)
            if D[i][j-1] != INF:
                candidates.append(D[i][j-1] + 9)
            if candidates:
                min_val = min(candidates)
                if min_val < I[i][j]:
                    I[i][j] = min_val
        
        # Update D[i][j] (deletion)
        if i > 0:
            candidates = []
            if D[i-1][j] != INF:
                candidates.append(D[i-1][j] + 2)
            if M[i-1][j] != INF:
                candidates.append(M[i-1][j] + 9)
            if I[i-1][j] != INF:
                candidates.append(I[i-1][j] + 9)
            if candidates:
                min_val = min(candidates)
                if min_val < D[i][j]:
                    D[i][j] = min_val

# Determine the minimal cost
min_cost = min(M[n][m], I[n][m], D[n][m])

# Backtrack to find the alignment
s_aligned = []
t_aligned = []
current_state = None

if min_cost == M[n][m]:
    current_state = 'M'
elif min_cost == I[n][m]:
    current_state = 'I'
else:
    current_state = 'D'

i, j = n, m

while i > 0 or j > 0:
    if current_state == 'M':
        s_aligned.append(S[i-1])
        t_aligned.append(T[j-1])
        cost = 0 if S[i-1] == T[j-1] else 5
        prev_val = M[i][j] - cost
        if i > 0 and j > 0 and M[i-1][j-1] == prev_val:
            i -= 1
            j -= 1
            current_state = 'M'
        elif i > 0 and j > 0 and I[i-1][j-1] == prev_val:
            i -= 1
            j -= 1
            current_state = 'I'
        elif i > 0 and j > 0 and D[i-1][j-1] == prev_val:
            i -= 1
            j -= 1
            current_state = 'D'
    elif current_state == 'I':
        s_aligned.append('-')
        t_aligned.append(T[j-1])
        current_val = I[i][j]
        if j > 0 and I[i][j-1] != INF and I[i][j-1] + 2 == current_val:
            j -= 1
            current_state = 'I'
        elif j > 0 and M[i][j-1] != INF and M[i][j-1] + 9 == current_val:
            j -= 1
            current_state = 'M'
        elif j > 0 and D[i][j-1] != INF and D[i][j-1] + 9 == current_val:
            j -= 1
            current_state = 'D'
    elif current_state == 'D':
        s_aligned.append(S[i-1])
        t_aligned.append('-')
        current_val = D[i][j]
        if i > 0 and D[i-1][j] != INF and D[i-1][j] + 2 == current_val:
            i -= 1
            current_state = 'D'
        elif i > 0 and M[i-1][j] != INF and M[i-1][j] + 9 == current_val:
            i -= 1
            current_state = 'M'
        elif i > 0 and I[i-1][j] != INF and I[i-1][j] + 9 == current_val:
            i -= 1
            current_state = 'I'

s_aligned = s_aligned[::-1]
t_aligned = t_aligned[::-1]

print(min_cost)
print(''.join(s_aligned))
print(''.join(t_aligned))
0