結果
| 問題 |
No.2237 Xor Sum Hoge
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-26 15:57:27 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 1,827 bytes |
| コンパイル時間 | 509 ms |
| コンパイル使用メモリ | 82,072 KB |
| 実行使用メモリ | 270,852 KB |
| 最終ジャッジ日時 | 2025-03-26 15:58:28 |
| 合計ジャッジ時間 | 22,795 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | TLE * 1 -- * 31 |
ソースコード
MOD = 998244353
def main():
import sys
N, B, C = map(int, sys.stdin.readline().split())
# Precompute factorial and inverse factorial modulo MOD
max_n = N
fact = [1] * (max_n + 1)
for i in range(1, max_n + 1):
fact[i] = fact[i-1] * i % MOD
inv_fact = [1] * (max_n + 1)
inv_fact[max_n] = pow(fact[max_n], MOD - 2, MOD)
for i in range(max_n - 1, -1, -1):
inv_fact[i] = inv_fact[i+1] * (i+1) % MOD
def comb(n, k):
if k < 0 or k > n:
return 0
return fact[n] * inv_fact[k] % MOD * inv_fact[n - k] % MOD
cur_dp = {0: 1}
for k in range(60):
b_k = (B >> k) & 1
c_k = (C >> k) & 1
next_dp = {}
for c_in, count in cur_dp.items():
# Check if the condition c_k ≡ (b_k - c_in) mod 2 holds
if (c_k % 2) != ((b_k - c_in) % 2 + 2) % 2:
continue
numerator_min = c_in - b_k
c_out_min = (numerator_min + 1) // 2
c_out_min = max(c_out_min, 0)
numerator_max = N + c_in - b_k
c_out_max = numerator_max // 2
if c_out_min > c_out_max:
continue
for c_out in range(c_out_min, c_out_max + 1):
s = b_k + 2 * c_out - c_in
if s < 0 or s > N:
continue # This should not happen due to earlier checks
c = comb(N, s)
if c == 0:
continue
next_dp[c_out] = (next_dp.get(c_out, 0) + count * c) % MOD
cur_dp = next_dp
if not cur_dp:
break # No possible way, exit early
print(cur_dp.get(0, 0) % MOD)
if __name__ == '__main__':
main()
lam6er