結果
問題 | No.3082 Make Palindromic Multiple(Judge) |
ユーザー |
![]() |
提出日時 | 2025-03-28 23:14:07 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 496 ms / 3,500 ms |
コード長 | 13,740 bytes |
コンパイル時間 | 1,541 ms |
コンパイル使用メモリ | 139,564 KB |
実行使用メモリ | 11,036 KB |
最終ジャッジ日時 | 2025-04-16 13:12:43 |
合計ジャッジ時間 | 6,245 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 73 |
ソースコード
#ifdef LOCAL#include "template.hpp"#else#include<iostream>#include<string>#include<vector>#include<algorithm>#include<numeric>#include<cmath>#include<utility>#include<tuple>#include<array>#include<cstdint>#include<cstdio>#include<iomanip>#include<map>#include<set>#include<unordered_map>#include<unordered_set>#include<queue>#include<stack>#include<deque>#include<bitset>#include<cctype>#include<chrono>#include<random>#include<cassert>#include<cstddef>#include<iterator>#include<string_view>#include<type_traits>#include<functional>using namespace std;namespace io {template <typename T, typename U>istream &operator>>(istream &is, pair<T, U> &p) {is >> p.first >> p.second;return is;}template <typename T>istream &operator>>(istream &is, vector<T> &v) {for (auto &x : v) is >> x;return is;}template <typename T, size_t N = 0>istream &operator>>(istream &is, array<T, N> &v) {for (auto &x : v) is >> x;return is;}template <size_t N = 0, typename T>istream& cin_tuple_impl(istream &is, T &t) {if constexpr (N < std::tuple_size<T>::value) {auto &x = std::get<N>(t);is >> x;cin_tuple_impl<N + 1>(is, t);}return is;}template <class... T>istream &operator>>(istream &is, tuple<T...> &t) {return cin_tuple_impl(is, t);}template<typename T, typename U>ostream &operator<<(ostream &os, const pair<T, U> &p) {os << p.first << " " << p.second;return os;}template<typename T>ostream &operator<<(ostream &os, const vector<T> &v) {int s = (int)v.size();for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];return os;}template<typename T, size_t N>ostream &operator<<(ostream &os, const array<T, N> &v) {size_t n = v.size();for (size_t i = 0; i < n; i++) {if (i) os << " ";os << v[i];}return os;}template <size_t N = 0, typename T>ostream& cout_tuple_impl(ostream &os, const T &t) {if constexpr (N < std::tuple_size<T>::value) {if constexpr (N > 0) os << " ";const auto &x = std::get<N>(t);os << x;cout_tuple_impl<N + 1>(os, t);}return os;}template <class... T>ostream &operator<<(ostream &os, const tuple<T...> &t) {return cout_tuple_impl(os, t);}void in() {}template<typename T, class... U>void in(T &t, U &...u) {cin >> t;in(u...);}void out() { cout << "\n"; }template<typename T, class... U, char sep = ' '>void out(const T &t, const U &...u) {cout << t;if (sizeof...(u)) cout << sep;out(u...);}void outr() {}template<typename T, class... U, char sep = ' '>void outr(const T &t, const U &...u) {cout << t;outr(u...);}void __attribute__((constructor)) _c() {ios_base::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(15);}} // namespace iousing io::in;using io::out;using io::outr;#define SHOW(x) static_cast<void>(0)using ll = long long;using D = double;using LD = long double;using P = pair<ll, ll>;using u8 = uint8_t;using u16 = uint16_t;using u32 = uint32_t;using u64 = uint64_t;using i128 = __int128;using u128 = unsigned __int128;using vi = vector<ll>;template <class T> using vc = vector<T>;template <class T> using vvc = vector<vc<T>>;template <class T> using vvvc = vector<vvc<T>>;template <class T> using vvvvc = vector<vvvc<T>>;template <class T> using vvvvvc = vector<vvvvc<T>>;#define vv(type, name, h, ...) \vector<vector<type>> name(h, vector<type>(__VA_ARGS__))#define vvv(type, name, h, w, ...) \vector<vector<vector<type>>> name( \h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))#define vvvv(type, name, a, b, c, ...) \vector<vector<vector<vector<type>>>> name( \a, vector<vector<vector<type>>>( \b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))template<typename T> using PQ = priority_queue<T,vector<T>>;template<typename T> using minPQ = priority_queue<T, vector<T>, greater<T>>;#define rep1(a) for(ll i = 0; i < a; i++)#define rep2(i, a) for(ll i = 0; i < a; i++)#define rep3(i, a, b) for(ll i = a; i < b; i++)#define rep4(i, a, b, c) for(ll i = a; i < b; i += c)#define overload4(a, b, c, d, e, ...) e#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)#define rrep1(a) for(ll i = (a)-1; i >= 0; i--)#define rrep2(i, a) for(ll i = (a)-1; i >= 0; i--)#define rrep3(i, a, b) for(ll i = (b)-1; i >= a; i--)#define rrep4(i, a, b, c) for(ll i = (b)-1; i >= a; i -= c)#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)#define for_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))#define ALL(v) v.begin(), v.end()#define RALL(v) v.rbegin(), v.rend()#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() )#define SZ(v) ll(v.size())#define MIN(v) *min_element(ALL(v))#define MAX(v) *max_element(ALL(v))#define LB(c, x) distance((c).begin(), lower_bound(ALL(c), (x)))#define UB(c, x) distance((c).begin(), upper_bound(ALL(c), (x)))template <typename T, typename U>T SUM(const vector<U> &v) {T res = 0;for(auto &&a : v) res += a;return res;}template <typename T>vector<pair<T,int>> RLE(const vector<T> &v) {if (v.empty()) return {};T cur = v.front();int cnt = 1;vector<pair<T,int>> res;for (int i = 1; i < (int)v.size(); i++) {if (cur == v[i]) cnt++;else {res.emplace_back(cur, cnt);cnt = 1; cur = v[i];}}res.emplace_back(cur, cnt);return res;}template<class T, class S>inline bool chmax(T &a, const S &b) { return (a < b ? a = b, true : false); }template<class T, class S>inline bool chmin(T &a, const S &b) { return (a > b ? a = b, true : false); }void YESNO(bool flag) { out(flag ? "YES" : "NO"); }void yesno(bool flag) { out(flag ? "Yes" : "No"); }int popcnt(int x) { return __builtin_popcount(x); }int popcnt(u32 x) { return __builtin_popcount(x); }int popcnt(ll x) { return __builtin_popcountll(x); }int popcnt(u64 x) { return __builtin_popcountll(x); }int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }int popcnt_sgn(ll x) { return (__builtin_parityl(x) & 1 ? -1 : 1); }int popcnt_sgn(u64 x) { return (__builtin_parityl(x) & 1 ? -1 : 1); }int highbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int highbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int highbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }int highbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }template <typename T>T get_bit(T x, int k) { return x >> k & 1; }template <typename T>T set_bit(T x, int k) { return x | T(1) << k; }template <typename T>T reset_bit(T x, int k) { return x & ~(T(1) << k); }template <typename T>T flip_bit(T x, int k) { return x ^ T(1) << k; }template <typename T>T popf(deque<T> &que) { T a = que.front(); que.pop_front(); return a; }template <typename T>T popb(deque<T> &que) { T a = que.back(); que.pop_back(); return a; }template <typename T>T pop(queue<T> &que) { T a = que.front(); que.pop(); return a; }template <typename T>T pop(stack<T> &que) { T a = que.top(); que.pop(); return a; }template <typename T>T pop(PQ<T> &que) { T a = que.top(); que.pop(); return a; }template <typename T>T pop(minPQ<T> &que) { T a = que.top(); que.pop(); return a; }template <typename F>ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {if (check_ok) assert(check(ok));while (abs(ok - ng) > 1) {ll mid = (ok + ng) / 2;(check(mid) ? ok : ng) = mid;}return ok;}template <typename F>double binary_search_real(F check, double ok, double ng, int iter = 60) {for (int _ = 0; _ < iter; _++) {double mid = (ok + ng) / 2;(check(mid) ? ok : ng) = mid;}return (ok + ng) / 2;}// max x s.t. b*x <= all div_floor(ll a, ll b) {assert(b != 0);if (b < 0) a = -a, b = -b;return a / b - (a % b < 0);}// max x s.t. b*x < all div_under(ll a, ll b) {assert(b != 0);if (b < 0) a = -a, b = -b;return a / b - (a % b <= 0);}// min x s.t. b*x >= all div_ceil(ll a, ll b) {assert(b != 0);if (b < 0) a = -a, b = -b;return a / b + (a % b > 0);}// min x s.t. b*x > all div_over(ll a, ll b) {assert(b != 0);if (b < 0) a = -a, b = -b;return a / b + (a % b >= 0);}// x = a mod b (b > 0), 0 <= x < bll modulo(ll a, ll b) {assert(b > 0);ll c = a % b;return c < 0 ? c + b : c;}// (q,r) s.t. a = b*q + r, 0 <= r < b (b > 0)// div_floor(a,b), modulo(a,b)pair<ll,ll> divmod(ll a, ll b) {ll q = div_floor(a,b);return {q, a - b*q};}#endifstruct LazyMontgomeryModInt64 {using mint = LazyMontgomeryModInt64;using i64 = int64_t;using u64 = uint64_t;using u128 = __uint128_t;static u64 mod;static u64 r;static u64 n2;static u64 get_r() {u64 ret = mod;for (int i = 0; i < 5; ++i) ret *= 2 - mod * ret;return ret;}static void set_mod(u64 mod_) {assert(mod_ < (1LL << 62));assert((mod_ & 1) == 1);mod = mod_;r = get_r();assert(r * mod == 1);n2 = -u128(mod) % mod;}u64 a;LazyMontgomeryModInt64() : a(0) {}LazyMontgomeryModInt64(const int64_t &b): a(reduce(u128(b % mod + mod) * n2)){};static u64 reduce(const u128 &b) {return (b + u128(u64(b) * u64(-r)) * mod) >> 64;}mint &operator+=(const mint &b) {if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod;return *this;}mint &operator-=(const mint &b) {if (i64(a -= b.a) < 0) a += 2 * mod;return *this;}mint &operator*=(const mint &b) {a = reduce(u128(a) * b.a);return *this;}mint &operator/=(const mint &b) {*this *= b.inverse();return *this;}mint operator+(const mint &b) const { return mint(*this) += b; }mint operator-(const mint &b) const { return mint(*this) -= b; }mint operator*(const mint &b) const { return mint(*this) *= b; }mint operator/(const mint &b) const { return mint(*this) /= b; }bool operator==(const mint &b) const {return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);}bool operator!=(const mint &b) const {return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);}mint operator-() const { return mint() - mint(*this); }mint operator+() const { return mint(*this); }mint pow(u64 n) const {mint ret(1), mul(*this);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}mint inverse() const {assert(a != 0);return this->pow(mod-2);}friend ostream &operator<<(ostream &os, const mint &b) {return os << b.get();}friend istream &operator>>(istream &is, mint &b) {i64 t;is >> t;b = LazyMontgomeryModInt64(t);return (is);}u64 get() const {u64 ret = reduce(a);return ret >= mod ? ret - mod : ret;}static u64 get_mod() { return mod; }};using m64 = LazyMontgomeryModInt64;typename m64::u64 m64::mod, m64::r, m64::n2;bool miller_rabin(ll n, const vector<ll> &witness) {m64::set_mod(n);int s = 0, t;ll d = n - 1;while (d % 2 == 0) d >>= 1, s++;for (ll a : witness) {if (n <= a) return true;m64 x = m64(a).pow(d);if (x != 1) {for (t = 0; t < s; t++) {if (x == n-1) break;x = x * x;}if (t == s) return false;}}return true;}bool primality_test(ll n) {if (n <= 1) return false;if (n <= 2) return true;if (n % 2 == 0) return false;if (n < 4759123141LL) return miller_rabin(n, {2, 7, 61});else return miller_rabin(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});}ll random_prime(ll lb, ll ub) {mt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count());uniform_int_distribution<ll> rand(lb, ub);ll q;while (!primality_test(q = rand(mt)));return q;}mt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count());int main() {int k; in(k);vector<string> s(k);vector<ll> t(k);rep(i,k) in(s[i],t[i]);rep(_,3){ll p = random_prime(1e13, 1e14);uniform_int_distribution<ll> rand(1, p-1);ll b = rand(mt);m64::set_mod(p);m64 hash = 0, rev_hash = 0;ll len = 0;rep(i,k){ll m = SZ(s[i]);m64 ht = 0, htr = 0;rrep(j,m) ht = ht * b + (s[i][j]-'0');rep(j,m) htr = htr * b + (s[i][j]-'0');m64 bl = m64(b).pow(len);m64 bm = m64(b).pow(m);m64 bmt = bm.pow(t[i]);m64 xx = (bmt-1) / (bm-1);hash = hash + bl * ht * xx;rev_hash = rev_hash * bmt + htr * xx;ll tm = (t[i] % (p-1)) * m % (p-1);len = (len + tm) % (p-1);}if(hash != rev_hash){out("No");return 0;}}out("Yes");}