結果

問題 No.3082 Make Palindromic Multiple(Judge)
ユーザー apricity
提出日時 2025-03-28 23:14:07
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 496 ms / 3,500 ms
コード長 13,740 bytes
コンパイル時間 1,541 ms
コンパイル使用メモリ 139,564 KB
実行使用メモリ 11,036 KB
最終ジャッジ日時 2025-04-16 13:12:43
合計ジャッジ時間 6,245 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 73
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef LOCAL
#include "template.hpp"
#else
#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<numeric>
#include<cmath>
#include<utility>
#include<tuple>
#include<array>
#include<cstdint>
#include<cstdio>
#include<iomanip>
#include<map>
#include<set>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<stack>
#include<deque>
#include<bitset>
#include<cctype>
#include<chrono>
#include<random>
#include<cassert>
#include<cstddef>
#include<iterator>
#include<string_view>
#include<type_traits>
#include<functional>
using namespace std;
namespace io {
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
template <typename T, size_t N = 0>
istream &operator>>(istream &is, array<T, N> &v) {
for (auto &x : v) is >> x;
return is;
}
template <size_t N = 0, typename T>
istream& cin_tuple_impl(istream &is, T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
is >> x;
cin_tuple_impl<N + 1>(is, t);
}
return is;
}
template <class... T>
istream &operator>>(istream &is, tuple<T...> &t) {
return cin_tuple_impl(is, t);
}
template<typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template<typename T, size_t N>
ostream &operator<<(ostream &os, const array<T, N> &v) {
size_t n = v.size();
for (size_t i = 0; i < n; i++) {
if (i) os << " ";
os << v[i];
}
return os;
}
template <size_t N = 0, typename T>
ostream& cout_tuple_impl(ostream &os, const T &t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) os << " ";
const auto &x = std::get<N>(t);
os << x;
cout_tuple_impl<N + 1>(os, t);
}
return os;
}
template <class... T>
ostream &operator<<(ostream &os, const tuple<T...> &t) {
return cout_tuple_impl(os, t);
}
void in() {}
template<typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template<typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
void outr() {}
template<typename T, class... U, char sep = ' '>
void outr(const T &t, const U &...u) {
cout << t;
outr(u...);
}
void __attribute__((constructor)) _c() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
}
} // namespace io
using io::in;
using io::out;
using io::outr;
#define SHOW(x) static_cast<void>(0)
using ll = long long;
using D = double;
using LD = long double;
using P = pair<ll, ll>;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using vi = vector<ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vc<T>>;
template <class T> using vvvc = vector<vvc<T>>;
template <class T> using vvvvc = vector<vvvc<T>>;
template <class T> using vvvvvc = vector<vvvvc<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
template<typename T> using PQ = priority_queue<T,vector<T>>;
template<typename T> using minPQ = priority_queue<T, vector<T>, greater<T>>;
#define rep1(a) for(ll i = 0; i < a; i++)
#define rep2(i, a) for(ll i = 0; i < a; i++)
#define rep3(i, a, b) for(ll i = a; i < b; i++)
#define rep4(i, a, b, c) for(ll i = a; i < b; i += c)
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(a) for(ll i = (a)-1; i >= 0; i--)
#define rrep2(i, a) for(ll i = (a)-1; i >= 0; i--)
#define rrep3(i, a, b) for(ll i = (b)-1; i >= a; i--)
#define rrep4(i, a, b, c) for(ll i = (b)-1; i >= a; i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define for_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() )
#define SZ(v) ll(v.size())
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(c, x) distance((c).begin(), lower_bound(ALL(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(ALL(c), (x)))
template <typename T, typename U>
T SUM(const vector<U> &v) {
T res = 0;
for(auto &&a : v) res += a;
return res;
}
template <typename T>
vector<pair<T,int>> RLE(const vector<T> &v) {
if (v.empty()) return {};
T cur = v.front();
int cnt = 1;
vector<pair<T,int>> res;
for (int i = 1; i < (int)v.size(); i++) {
if (cur == v[i]) cnt++;
else {
res.emplace_back(cur, cnt);
cnt = 1; cur = v[i];
}
}
res.emplace_back(cur, cnt);
return res;
}
template<class T, class S>
inline bool chmax(T &a, const S &b) { return (a < b ? a = b, true : false); }
template<class T, class S>
inline bool chmin(T &a, const S &b) { return (a > b ? a = b, true : false); }
void YESNO(bool flag) { out(flag ? "YES" : "NO"); }
void yesno(bool flag) { out(flag ? "Yes" : "No"); }
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityl(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityl(x) & 1 ? -1 : 1); }
int highbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int highbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T get_bit(T x, int k) { return x >> k & 1; }
template <typename T>
T set_bit(T x, int k) { return x | T(1) << k; }
template <typename T>
T reset_bit(T x, int k) { return x & ~(T(1) << k); }
template <typename T>
T flip_bit(T x, int k) { return x ^ T(1) << k; }
template <typename T>
T popf(deque<T> &que) { T a = que.front(); que.pop_front(); return a; }
template <typename T>
T popb(deque<T> &que) { T a = que.back(); que.pop_back(); return a; }
template <typename T>
T pop(queue<T> &que) { T a = que.front(); que.pop(); return a; }
template <typename T>
T pop(stack<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename T>
T pop(PQ<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename T>
T pop(minPQ<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
ll mid = (ok + ng) / 2;
(check(mid) ? ok : ng) = mid;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 60) {
for (int _ = 0; _ < iter; _++) {
double mid = (ok + ng) / 2;
(check(mid) ? ok : ng) = mid;
}
return (ok + ng) / 2;
}
// max x s.t. b*x <= a
ll div_floor(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b - (a % b < 0);
}
// max x s.t. b*x < a
ll div_under(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b - (a % b <= 0);
}
// min x s.t. b*x >= a
ll div_ceil(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b + (a % b > 0);
}
// min x s.t. b*x > a
ll div_over(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b + (a % b >= 0);
}
// x = a mod b (b > 0), 0 <= x < b
ll modulo(ll a, ll b) {
assert(b > 0);
ll c = a % b;
return c < 0 ? c + b : c;
}
// (q,r) s.t. a = b*q + r, 0 <= r < b (b > 0)
// div_floor(a,b), modulo(a,b)
pair<ll,ll> divmod(ll a, ll b) {
ll q = div_floor(a,b);
return {q, a - b*q};
}
#endif
struct LazyMontgomeryModInt64 {
using mint = LazyMontgomeryModInt64;
using i64 = int64_t;
using u64 = uint64_t;
using u128 = __uint128_t;
static u64 mod;
static u64 r;
static u64 n2;
static u64 get_r() {
u64 ret = mod;
for (int i = 0; i < 5; ++i) ret *= 2 - mod * ret;
return ret;
}
static void set_mod(u64 mod_) {
assert(mod_ < (1LL << 62));
assert((mod_ & 1) == 1);
mod = mod_;
r = get_r();
assert(r * mod == 1);
n2 = -u128(mod) % mod;
}
u64 a;
LazyMontgomeryModInt64() : a(0) {}
LazyMontgomeryModInt64(const int64_t &b)
: a(reduce(u128(b % mod + mod) * n2)){};
static u64 reduce(const u128 &b) {
return (b + u128(u64(b) * u64(-r)) * mod) >> 64;
}
mint &operator+=(const mint &b) {
if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint &operator-=(const mint &b) {
if (i64(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint &operator*=(const mint &b) {
a = reduce(u128(a) * b.a);
return *this;
}
mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
mint operator+(const mint &b) const { return mint(*this) += b; }
mint operator-(const mint &b) const { return mint(*this) -= b; }
mint operator*(const mint &b) const { return mint(*this) *= b; }
mint operator/(const mint &b) const { return mint(*this) /= b; }
bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
mint operator-() const { return mint() - mint(*this); }
mint operator+() const { return mint(*this); }
mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
mint inverse() const {
assert(a != 0);
return this->pow(mod-2);
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
i64 t;
is >> t;
b = LazyMontgomeryModInt64(t);
return (is);
}
u64 get() const {
u64 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static u64 get_mod() { return mod; }
};
using m64 = LazyMontgomeryModInt64;
typename m64::u64 m64::mod, m64::r, m64::n2;
bool miller_rabin(ll n, const vector<ll> &witness) {
m64::set_mod(n);
int s = 0, t;
ll d = n - 1;
while (d % 2 == 0) d >>= 1, s++;
for (ll a : witness) {
if (n <= a) return true;
m64 x = m64(a).pow(d);
if (x != 1) {
for (t = 0; t < s; t++) {
if (x == n-1) break;
x = x * x;
}
if (t == s) return false;
}
}
return true;
}
bool primality_test(ll n) {
if (n <= 1) return false;
if (n <= 2) return true;
if (n % 2 == 0) return false;
if (n < 4759123141LL) return miller_rabin(n, {2, 7, 61});
else return miller_rabin(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
ll random_prime(ll lb, ll ub) {
mt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count());
uniform_int_distribution<ll> rand(lb, ub);
ll q;
while (!primality_test(q = rand(mt)));
return q;
}
mt19937_64 mt(chrono::steady_clock::now().time_since_epoch().count());
int main() {
int k; in(k);
vector<string> s(k);
vector<ll> t(k);
rep(i,k) in(s[i],t[i]);
rep(_,3){
ll p = random_prime(1e13, 1e14);
uniform_int_distribution<ll> rand(1, p-1);
ll b = rand(mt);
m64::set_mod(p);
m64 hash = 0, rev_hash = 0;
ll len = 0;
rep(i,k){
ll m = SZ(s[i]);
m64 ht = 0, htr = 0;
rrep(j,m) ht = ht * b + (s[i][j]-'0');
rep(j,m) htr = htr * b + (s[i][j]-'0');
m64 bl = m64(b).pow(len);
m64 bm = m64(b).pow(m);
m64 bmt = bm.pow(t[i]);
m64 xx = (bmt-1) / (bm-1);
hash = hash + bl * ht * xx;
rev_hash = rev_hash * bmt + htr * xx;
ll tm = (t[i] % (p-1)) * m % (p-1);
len = (len + tm) % (p-1);
}
if(hash != rev_hash){
out("No");
return 0;
}
}
out("Yes");
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0