結果

問題 No.3082 Make Palindromic Multiple(Judge)
ユーザー akakimidori
提出日時 2025-03-29 18:52:48
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 1,052 ms / 3,500 ms
コード長 9,283 bytes
コンパイル時間 17,901 ms
コンパイル使用メモリ 389,644 KB
実行使用メモリ 83,596 KB
最終ジャッジ日時 2025-04-16 13:14:08
合計ジャッジ時間 53,694 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 73
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: fields `sa` and `lcp` are never read
   --> src/main.rs:118:5
    |
116 | pub struct SAString<T> {
    |            -------- fields in this struct
117 |     s: Vec<T>,
118 |     sa: Vec<usize>,
    |     ^^
119 |     isa: Vec<usize>,
120 |     lcp: Vec<usize>,
    |     ^^^
    |
    = note: `#[warn(dead_code)]` on by default

ソースコード

diff #

fn main() {
    input! {
        n: usize,
        p: [(bytes, u128); n],
    }
    let mut q = p.clone();
    q.reverse();
    for q in q.iter_mut() {
        q.0.reverse();
    }
    let ans = if solve(p, q) { "Yes" } else { "No" };
    println!("{}", ans);
}

fn solve(mut p: Vec<(Vec<u8>, u128)>, q: Vec<(Vec<u8>, u128)>) -> bool {
    let n = p.len();
    p.extend(q.into_iter());
    let mut s = vec![];
    let mut memo = vec![];
    for p in p.iter() {
        memo.push(s.len());
        let len = p.0.len();
        s.extend(p.0.iter().cloned().cycle().take(2 * len));
    }
    let sa = SAString::new(s);
    let mut x = (0, 0);
    let mut y = (n, 0);
    while x.0 < n && y.0 < p.len() {
        let z = (x.1 % p[x.0].0.len() as u128) as usize;
        let w = (y.1 % p[y.0].0.len() as u128) as usize;
        let l = (memo[x.0] + z, memo[x.0] + z + p[x.0].0.len());
        let r = (memo[y.0] + w, memo[y.0] + w + p[y.0].0.len());
        let cmp = sa.compare(vec![l, r], vec![r, l]);
        let lcp = if cmp.0 == std::cmp::Ordering::Equal {
            let a = &p[x.0];
            let b = &p[y.0];
            (a.0.len() as u128 * a.1 - x.1).min(b.0.len() as u128 * b.1 - y.1)
        } else {
            cmp.1 as u128
        };
        x.1 += lcp;
        y.1 += lcp;
        let mut update = false;
        let a = &p[x.0];
        let b = &p[y.0];
        if a.0.len() as u128 * a.1 == x.1 {
            update = true;
            x.0 += 1;
            x.1 = 0;
        }
        if b.0.len() as u128 * b.1 == y.1 {
            update = true;
            y.0 += 1;
            y.1 = 0;
        }
        if !update {
            return false;
        }
    }
    true
}

// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

#[macro_export]
macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

#[macro_export]
macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------

pub struct SAString<T> {
    s: Vec<T>,
    sa: Vec<usize>,
    isa: Vec<usize>,
    lcp: Vec<usize>,
    rmq: RMQ<usize>,
}

impl<T: Ord> SAString<T> {
    pub fn new(s: Vec<T>) -> Self {
        let (sa, isa, lcp) = suffix_array(&s);
        let rmq = RMQ::new(lcp.clone());
        Self {
            s,
            sa,
            isa,
            lcp,
            rmq,
        }
    }
    pub fn find_lcp(&self, x: usize, y: usize) -> usize {
        assert!(x.max(y) < self.s.len());
        if x == y {
            self.s.len() - x.max(y)
        } else {
            let a = self.isa[x.min(y)];
            let b = self.isa[x.max(y)];
            self.rmq.find(a.min(b) + 1, a.max(b) + 1)
        }
    }
    pub fn compare(
        &self,
        mut a: Vec<(usize, usize)>,
        mut b: Vec<(usize, usize)>,
    ) -> (std::cmp::Ordering, usize) {
        assert!(a
            .iter()
            .chain(b.iter())
            .all(|p| p.0 <= p.1 && p.1 <= self.s.len()));
        a.retain(|p| p.0 < p.1);
        b.retain(|p| p.0 < p.1);
        let mut x = 0;
        let mut y = 0;
        let mut sum = 0;
        while x < a.len() && y < b.len() {
            let a = &mut a[x];
            let b = &mut b[y];
            let len = (a.1 - a.0).min(b.1 - b.0);
            let lcp = self.find_lcp(a.0, b.0).min(len);
            a.0 += lcp;
            b.0 += lcp;
            sum += lcp;
            if a.0 < a.1 && b.0 < b.1 {
                return (self.s[a.0].cmp(&self.s[b.0]), sum);
            }
            if a.0 == a.1 {
                x += 1;
            }
            if b.0 == b.1 {
                y += 1;
            }
        }
        ((x < a.len()).cmp(&(y < b.len())), sum)
    }
}

// O(N (log N)^2)
// 文字種によらない
// O(N log N) の実装が悪く、log2つの方が早かったので一時的にこちらに更新
// ---------- begin suffix array ----------
fn suffix_array<T: Ord>(s: &[T]) -> (Vec<usize>, Vec<usize>, Vec<usize>) {
    let n = s.len();
    let mut z = s.iter().collect::<Vec<_>>();
    z.sort();
    z.dedup();
    let mut ord = Vec::with_capacity(n);
    for s in s.iter() {
        ord.push(z.binary_search(&s).unwrap() as u32 + 1);
    }
    let mut z = (0..n).map(|p| ((ord[p], 0), p)).collect::<Vec<_>>();
    z.sort_by_key(|p| p.0);
    let mut len = 1;
    while len < n {
        for z in z.iter_mut() {
            z.0 = (ord[z.1], ord.get(z.1 + len).map_or(0, |p| *p));
        }
        z.sort_by_key(|p| p.0);
        let mut id = 1;
        let mut prev = z[0].0;
        for z in z.iter_mut() {
            if z.0 != prev {
                id += 1;
                prev = z.0;
            }
            ord[z.1] = id;
        }
        len <<= 1;
    }
    let sa = z.into_iter().map(|p| p.1).collect::<Vec<_>>();
    let mut isa = vec![0; s.len()];
    for (i, sa) in sa.iter().enumerate() {
        isa[*sa] = i;
    }
    let mut lcp = vec![0; s.len()];
    let mut h = 0;
    for i in 0..sa.len() {
        if isa[i] + 1 < sa.len() {
            let j = sa[isa[i] + 1];
            while i.max(j) + h < sa.len() && s[i + h] == s[j + h] {
                h += 1;
            }
            lcp[isa[i] + 1] = h;
            if h > 0 {
                h -= 1;
            }
        }
    }
    (sa, isa, lcp)
}
// ---------- end suffix array ----------

pub struct RMQ<T> {
    data: Vec<T>,
    table: SparseTable<T>,
    bit: Vec<usize>,
}

impl<T> RMQ<T>
where
    T: Ord + Copy,
{
    pub fn new(data: Vec<T>) -> Self {
        assert!(!data.is_empty());
        let mut bit = vec![0; data.len()];
        let w = 8 * std::mem::size_of_val(&bit[0]);
        let mut stack: Vec<usize> = vec![];
        let mut table_ini = Vec::with_capacity((data.len() + w - 1) / w);
        for (bit, data) in bit.chunks_mut(w).zip(data.chunks(w)) {
            stack.clear();
            let mut b = 0;
            for (i, (bit, d)) in bit.iter_mut().zip(data.iter()).enumerate() {
                while stack.last().map_or(false, |x| data[*x] > *d) {
                    b ^= 1 << stack.pop().unwrap();
                }
                b |= 1 << i;
                *bit = b;
                stack.push(i);
            }
            table_ini.push(data[stack[0]]);
        }
        let table = SparseTable::new(table_ini);
        RMQ { data, table, bit }
    }
    pub fn find(&self, l: usize, r: usize) -> T {
        assert!(l < r && r <= self.data.len());
        let w = 8 * std::mem::size_of_val(&self.bit[0]);
        let r = r - 1;
        let p = l / w;
        let q = r / w;
        if p == q {
            let pos = l + (self.bit[r] >> (l % w)).trailing_zeros() as usize;
            self.data[pos]
        } else {
            let lw = l + (self.bit[p * w + w - 1] >> (l % w)).trailing_zeros() as usize;
            let rw = q * w + self.bit[r].trailing_zeros() as usize;
            let mut res = std::cmp::min(self.data[lw], self.data[rw]);
            if p + 1 < q {
                res = std::cmp::min(res, self.table.find(p + 1, q));
            }
            res
        }
    }
}

// ---------- begin sparse table (min) ----------
pub struct SparseTable<T> {
    table: Vec<Vec<T>>,
    size: usize,
}

impl<T> SparseTable<T>
where
    T: Ord + Copy,
{
    pub fn new(mut a: Vec<T>) -> Self {
        assert!(a.len() > 0);
        let size = a.len();
        let mut table = vec![];
        let mut w = 1;
        while w + 1 <= a.len() {
            let next = a
                .iter()
                .zip(a[w..].iter())
                .map(|p| std::cmp::min(*p.0, *p.1))
                .collect::<Vec<_>>();
            table.push(a);
            a = next;
            w <<= 1;
        }
        table.push(a);
        SparseTable {
            table: table,
            size: size,
        }
    }
    pub fn find(&self, l: usize, r: usize) -> T {
        assert!(l < r && r <= self.size);
        let k = 8 * std::mem::size_of::<usize>() - 1 - (r - l).leading_zeros() as usize;
        let table = &self.table[k];
        std::cmp::min(table[l], table[r - (1 << k)])
    }
}
// ---------- end sparse table (min) ----------
0