結果
| 問題 |
No.3082 Make Palindromic Multiple(Judge)
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2025-03-29 18:52:48 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 1,052 ms / 3,500 ms |
| コード長 | 9,283 bytes |
| コンパイル時間 | 17,901 ms |
| コンパイル使用メモリ | 389,644 KB |
| 実行使用メモリ | 83,596 KB |
| 最終ジャッジ日時 | 2025-04-16 13:14:08 |
| 合計ジャッジ時間 | 53,694 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 73 |
コンパイルメッセージ
warning: fields `sa` and `lcp` are never read
--> src/main.rs:118:5
|
116 | pub struct SAString<T> {
| -------- fields in this struct
117 | s: Vec<T>,
118 | sa: Vec<usize>,
| ^^
119 | isa: Vec<usize>,
120 | lcp: Vec<usize>,
| ^^^
|
= note: `#[warn(dead_code)]` on by default
ソースコード
fn main() {
input! {
n: usize,
p: [(bytes, u128); n],
}
let mut q = p.clone();
q.reverse();
for q in q.iter_mut() {
q.0.reverse();
}
let ans = if solve(p, q) { "Yes" } else { "No" };
println!("{}", ans);
}
fn solve(mut p: Vec<(Vec<u8>, u128)>, q: Vec<(Vec<u8>, u128)>) -> bool {
let n = p.len();
p.extend(q.into_iter());
let mut s = vec![];
let mut memo = vec![];
for p in p.iter() {
memo.push(s.len());
let len = p.0.len();
s.extend(p.0.iter().cloned().cycle().take(2 * len));
}
let sa = SAString::new(s);
let mut x = (0, 0);
let mut y = (n, 0);
while x.0 < n && y.0 < p.len() {
let z = (x.1 % p[x.0].0.len() as u128) as usize;
let w = (y.1 % p[y.0].0.len() as u128) as usize;
let l = (memo[x.0] + z, memo[x.0] + z + p[x.0].0.len());
let r = (memo[y.0] + w, memo[y.0] + w + p[y.0].0.len());
let cmp = sa.compare(vec![l, r], vec![r, l]);
let lcp = if cmp.0 == std::cmp::Ordering::Equal {
let a = &p[x.0];
let b = &p[y.0];
(a.0.len() as u128 * a.1 - x.1).min(b.0.len() as u128 * b.1 - y.1)
} else {
cmp.1 as u128
};
x.1 += lcp;
y.1 += lcp;
let mut update = false;
let a = &p[x.0];
let b = &p[y.0];
if a.0.len() as u128 * a.1 == x.1 {
update = true;
x.0 += 1;
x.1 = 0;
}
if b.0.len() as u128 * b.1 == y.1 {
update = true;
y.0 += 1;
y.1 = 0;
}
if !update {
return false;
}
}
true
}
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
pub struct SAString<T> {
s: Vec<T>,
sa: Vec<usize>,
isa: Vec<usize>,
lcp: Vec<usize>,
rmq: RMQ<usize>,
}
impl<T: Ord> SAString<T> {
pub fn new(s: Vec<T>) -> Self {
let (sa, isa, lcp) = suffix_array(&s);
let rmq = RMQ::new(lcp.clone());
Self {
s,
sa,
isa,
lcp,
rmq,
}
}
pub fn find_lcp(&self, x: usize, y: usize) -> usize {
assert!(x.max(y) < self.s.len());
if x == y {
self.s.len() - x.max(y)
} else {
let a = self.isa[x.min(y)];
let b = self.isa[x.max(y)];
self.rmq.find(a.min(b) + 1, a.max(b) + 1)
}
}
pub fn compare(
&self,
mut a: Vec<(usize, usize)>,
mut b: Vec<(usize, usize)>,
) -> (std::cmp::Ordering, usize) {
assert!(a
.iter()
.chain(b.iter())
.all(|p| p.0 <= p.1 && p.1 <= self.s.len()));
a.retain(|p| p.0 < p.1);
b.retain(|p| p.0 < p.1);
let mut x = 0;
let mut y = 0;
let mut sum = 0;
while x < a.len() && y < b.len() {
let a = &mut a[x];
let b = &mut b[y];
let len = (a.1 - a.0).min(b.1 - b.0);
let lcp = self.find_lcp(a.0, b.0).min(len);
a.0 += lcp;
b.0 += lcp;
sum += lcp;
if a.0 < a.1 && b.0 < b.1 {
return (self.s[a.0].cmp(&self.s[b.0]), sum);
}
if a.0 == a.1 {
x += 1;
}
if b.0 == b.1 {
y += 1;
}
}
((x < a.len()).cmp(&(y < b.len())), sum)
}
}
// O(N (log N)^2)
// 文字種によらない
// O(N log N) の実装が悪く、log2つの方が早かったので一時的にこちらに更新
// ---------- begin suffix array ----------
fn suffix_array<T: Ord>(s: &[T]) -> (Vec<usize>, Vec<usize>, Vec<usize>) {
let n = s.len();
let mut z = s.iter().collect::<Vec<_>>();
z.sort();
z.dedup();
let mut ord = Vec::with_capacity(n);
for s in s.iter() {
ord.push(z.binary_search(&s).unwrap() as u32 + 1);
}
let mut z = (0..n).map(|p| ((ord[p], 0), p)).collect::<Vec<_>>();
z.sort_by_key(|p| p.0);
let mut len = 1;
while len < n {
for z in z.iter_mut() {
z.0 = (ord[z.1], ord.get(z.1 + len).map_or(0, |p| *p));
}
z.sort_by_key(|p| p.0);
let mut id = 1;
let mut prev = z[0].0;
for z in z.iter_mut() {
if z.0 != prev {
id += 1;
prev = z.0;
}
ord[z.1] = id;
}
len <<= 1;
}
let sa = z.into_iter().map(|p| p.1).collect::<Vec<_>>();
let mut isa = vec![0; s.len()];
for (i, sa) in sa.iter().enumerate() {
isa[*sa] = i;
}
let mut lcp = vec![0; s.len()];
let mut h = 0;
for i in 0..sa.len() {
if isa[i] + 1 < sa.len() {
let j = sa[isa[i] + 1];
while i.max(j) + h < sa.len() && s[i + h] == s[j + h] {
h += 1;
}
lcp[isa[i] + 1] = h;
if h > 0 {
h -= 1;
}
}
}
(sa, isa, lcp)
}
// ---------- end suffix array ----------
pub struct RMQ<T> {
data: Vec<T>,
table: SparseTable<T>,
bit: Vec<usize>,
}
impl<T> RMQ<T>
where
T: Ord + Copy,
{
pub fn new(data: Vec<T>) -> Self {
assert!(!data.is_empty());
let mut bit = vec![0; data.len()];
let w = 8 * std::mem::size_of_val(&bit[0]);
let mut stack: Vec<usize> = vec![];
let mut table_ini = Vec::with_capacity((data.len() + w - 1) / w);
for (bit, data) in bit.chunks_mut(w).zip(data.chunks(w)) {
stack.clear();
let mut b = 0;
for (i, (bit, d)) in bit.iter_mut().zip(data.iter()).enumerate() {
while stack.last().map_or(false, |x| data[*x] > *d) {
b ^= 1 << stack.pop().unwrap();
}
b |= 1 << i;
*bit = b;
stack.push(i);
}
table_ini.push(data[stack[0]]);
}
let table = SparseTable::new(table_ini);
RMQ { data, table, bit }
}
pub fn find(&self, l: usize, r: usize) -> T {
assert!(l < r && r <= self.data.len());
let w = 8 * std::mem::size_of_val(&self.bit[0]);
let r = r - 1;
let p = l / w;
let q = r / w;
if p == q {
let pos = l + (self.bit[r] >> (l % w)).trailing_zeros() as usize;
self.data[pos]
} else {
let lw = l + (self.bit[p * w + w - 1] >> (l % w)).trailing_zeros() as usize;
let rw = q * w + self.bit[r].trailing_zeros() as usize;
let mut res = std::cmp::min(self.data[lw], self.data[rw]);
if p + 1 < q {
res = std::cmp::min(res, self.table.find(p + 1, q));
}
res
}
}
}
// ---------- begin sparse table (min) ----------
pub struct SparseTable<T> {
table: Vec<Vec<T>>,
size: usize,
}
impl<T> SparseTable<T>
where
T: Ord + Copy,
{
pub fn new(mut a: Vec<T>) -> Self {
assert!(a.len() > 0);
let size = a.len();
let mut table = vec![];
let mut w = 1;
while w + 1 <= a.len() {
let next = a
.iter()
.zip(a[w..].iter())
.map(|p| std::cmp::min(*p.0, *p.1))
.collect::<Vec<_>>();
table.push(a);
a = next;
w <<= 1;
}
table.push(a);
SparseTable {
table: table,
size: size,
}
}
pub fn find(&self, l: usize, r: usize) -> T {
assert!(l < r && r <= self.size);
let k = 8 * std::mem::size_of::<usize>() - 1 - (r - l).leading_zeros() as usize;
let table = &self.table[k];
std::cmp::min(table[l], table[r - (1 << k)])
}
}
// ---------- end sparse table (min) ----------
akakimidori