結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-03-31 17:23:36 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 4,028 bytes |
コンパイル時間 | 207 ms |
コンパイル使用メモリ | 82,640 KB |
実行使用メモリ | 70,292 KB |
最終ジャッジ日時 | 2025-03-31 17:23:57 |
合計ジャッジ時間 | 2,717 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import sys import math import random from functools import reduce MOD = 10**9 + 7 def is_prime(n): if n < 2: return False for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return sorted(factors) def generate_divisors(factors): from collections import defaultdict factor_counts = defaultdict(int) for p in factors: factor_counts[p] += 1 divisors = [1] for p in factor_counts: exponents = [p**e for e in range(factor_counts[p] + 1)] new_divisors = [] for d in divisors: for exp in exponents: new_divisors.append(d * exp) divisors = new_divisors divisors = sorted(divisors) return divisors def multiply(a, b, mod): return [ [(a[0][0]*b[0][0] + a[0][1]*b[1][0]) % mod, (a[0][0]*b[0][1] + a[0][1]*b[1][1]) % mod], [(a[1][0]*b[0][0] + a[1][1]*b[1][0]) % mod, (a[1][0]*b[0][1] + a[1][1]*b[1][1]) % mod] ] def matrix_pow(mat, power, mod): result = [[1, 0], [0, 1]] while power > 0: if power % 2 == 1: result = multiply(result, mat, mod) mat = multiply(mat, mat, mod) power //= 2 return result def compute_fibs(d, mod): if d == 0: return (0, 1) if mod == 1: return (0, 0) result = [[1, 0], [0, 1]] mat = [[1, 1], [1, 0]] power = d while power > 0: if power % 2 == 1: result = multiply(result, mat, mod) mat = multiply(mat, mat, mod) power //= 2 Fd_plus_1 = result[0][0] Fd = result[0][1] return (Fd % mod, Fd_plus_1 % mod) def main(): input = sys.stdin.read().split() ptr = 0 n = int(input[ptr]) ptr +=1 primes = [] for _ in range(n): p = int(input[ptr]) k = int(input[ptr+1]) ptr +=2 primes.append( (p, k) ) periods = [] for p, k in primes: if p == 2: per = 3 * (2 ** (k-1)) periods.append(per) continue if p == 5: per = 4 * (5 ** k) periods.append(per) continue legendre = pow(5, (p-1)//2, p) m = 0 if legendre == 1 or legendre == 0: m = p -1 else: m = 2 * (p +1) factors = factor(m) divisors = generate_divisors(factors) correct_d = None for d in divisors: if d ==0: Fd = 0 Fd_next = 1 % p else: Fd, Fd_next = compute_fibs(d, p) if Fd % p ==0 and Fd_next % p ==1: correct_d = d break if correct_d is None: correct_d =0 per_p = correct_d per_i = per_p * (p ** (k-1)) periods.append(per_i) def lcm(a, b): return a * b // math.gcd(a, b) total = reduce(lcm, periods, 1) print(total % MOD) if __name__ == "__main__": main()