結果
| 問題 | No.3038 シャッフルの再現 |
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-31 17:23:36 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 4,028 bytes |
| 記録 | |
| コンパイル時間 | 207 ms |
| コンパイル使用メモリ | 82,640 KB |
| 実行使用メモリ | 70,292 KB |
| 最終ジャッジ日時 | 2025-03-31 17:23:57 |
| 合計ジャッジ時間 | 2,717 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import sys
import math
import random
from functools import reduce
MOD = 10**9 + 7
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 3, 5, 7, 11]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = math.gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = []
def _factor(n):
if n == 1:
return
if is_prime(n):
factors.append(n)
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
return sorted(factors)
def generate_divisors(factors):
from collections import defaultdict
factor_counts = defaultdict(int)
for p in factors:
factor_counts[p] += 1
divisors = [1]
for p in factor_counts:
exponents = [p**e for e in range(factor_counts[p] + 1)]
new_divisors = []
for d in divisors:
for exp in exponents:
new_divisors.append(d * exp)
divisors = new_divisors
divisors = sorted(divisors)
return divisors
def multiply(a, b, mod):
return [
[(a[0][0]*b[0][0] + a[0][1]*b[1][0]) % mod,
(a[0][0]*b[0][1] + a[0][1]*b[1][1]) % mod],
[(a[1][0]*b[0][0] + a[1][1]*b[1][0]) % mod,
(a[1][0]*b[0][1] + a[1][1]*b[1][1]) % mod]
]
def matrix_pow(mat, power, mod):
result = [[1, 0], [0, 1]]
while power > 0:
if power % 2 == 1:
result = multiply(result, mat, mod)
mat = multiply(mat, mat, mod)
power //= 2
return result
def compute_fibs(d, mod):
if d == 0:
return (0, 1)
if mod == 1:
return (0, 0)
result = [[1, 0], [0, 1]]
mat = [[1, 1], [1, 0]]
power = d
while power > 0:
if power % 2 == 1:
result = multiply(result, mat, mod)
mat = multiply(mat, mat, mod)
power //= 2
Fd_plus_1 = result[0][0]
Fd = result[0][1]
return (Fd % mod, Fd_plus_1 % mod)
def main():
input = sys.stdin.read().split()
ptr = 0
n = int(input[ptr])
ptr +=1
primes = []
for _ in range(n):
p = int(input[ptr])
k = int(input[ptr+1])
ptr +=2
primes.append( (p, k) )
periods = []
for p, k in primes:
if p == 2:
per = 3 * (2 ** (k-1))
periods.append(per)
continue
if p == 5:
per = 4 * (5 ** k)
periods.append(per)
continue
legendre = pow(5, (p-1)//2, p)
m = 0
if legendre == 1 or legendre == 0:
m = p -1
else:
m = 2 * (p +1)
factors = factor(m)
divisors = generate_divisors(factors)
correct_d = None
for d in divisors:
if d ==0:
Fd = 0
Fd_next = 1 % p
else:
Fd, Fd_next = compute_fibs(d, p)
if Fd % p ==0 and Fd_next % p ==1:
correct_d = d
break
if correct_d is None:
correct_d =0
per_p = correct_d
per_i = per_p * (p ** (k-1))
periods.append(per_i)
def lcm(a, b):
return a * b // math.gcd(a, b)
total = reduce(lcm, periods, 1)
print(total % MOD)
if __name__ == "__main__":
main()
lam6er