結果
| 問題 |
No.121 傾向と対策:門松列(その2)
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-31 17:30:40 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 4,508 ms / 5,000 ms |
| コード長 | 3,617 bytes |
| コンパイル時間 | 181 ms |
| コンパイル使用メモリ | 82,056 KB |
| 実行使用メモリ | 462,492 KB |
| 最終ジャッジ日時 | 2025-03-31 17:31:45 |
| 合計ジャッジ時間 | 15,433 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 |
ソースコード
def main():
import sys
input = sys.stdin.read().split()
idx = 0
N = int(input[idx])
idx += 1
A = list(map(int, input[idx:idx + N]))
idx += N
# Coordinate compression
unique = sorted(set(A))
compress = {x: i + 1 for i, x in enumerate(unique)} # 1-based index
M = len(unique) + 2
compressed_A = [compress[x] for x in A]
# Precompute right_less and right_greater using Fenwick Tree
right_less = [0] * N
right_greater = [0] * N
ft = FenwickTree(M)
for j in range(N - 1, -1, -1):
v = compressed_A[j]
right_less[j] = ft.query(v - 1)
right_greater[j] = ft.size() - ft.query(v)
ft.add(v, 1)
# Precompute left_less and left_greater using Fenwick Tree
left_less = [0] * N
left_greater = [0] * N
ft_lt = FenwickTree(M)
for j in range(N):
v = compressed_A[j]
left_less[j] = ft_lt.query(v - 1)
cnt = j # number of elements added so far (j elements when processing 0-based)
left_greater[j] = cnt - ft_lt.query(v)
ft_lt.add(v, 1)
# Initialize right_count and left_count
from collections import defaultdict
right_count = defaultdict(int)
for x in compressed_A:
right_count[x] += 1
left_count = defaultdict(int)
# Fenwick Tree for same_less and same_greater
class Fenwick:
def __init__(self, size):
self.n = size
self.tree = [0] * (self.n + 2)
def update(self, idx, delta):
while idx <= self.n:
self.tree[idx] += delta
idx += idx & -idx
def query(self, idx):
res = 0
while idx > 0:
res += self.tree[idx]
idx -= idx & -idx
return res
def query_range(self, a, b):
if a > b:
return 0
return self.query(b) - self.query(a - 1)
fen_less_greater = Fenwick(M)
# Initialize Fenwick Tree with left[x] * right[x] for all x (initial left[x] is 0)
# Initially, all products are 0
ans = 0
for j in range(N):
v = compressed_A[j]
# Decrement right_count[v]
RC_old = right_count[v]
right_count[v] -= 1
# Calculate same_less and same_greater
same_less = fen_less_greater.query(v - 1)
same_greater = fen_less_greater.query_range(v + 1, M)
# Case 1: A_j is max, so left_less * right_less - same_less
case1 = left_less[j] * right_less[j] - same_less
if case1 > 0:
ans += case1
# Case 2: A_j is min, left_greater * right_greater - same_greater
case2 = left_greater[j] * right_greater[j] - same_greater
if case2 > 0:
ans += case2
# Update left_count[v] and Fenwick tree
LC_old = left_count[v]
left_count[v] += 1
# Calculate delta = (LC_old +1) * (RC_old -1) - (LC_old * RC_old)
delta = ( (LC_old +1) * (RC_old -1) ) - (LC_old * RC_old)
fen_less_greater.update(v, delta)
print(ans)
class FenwickTree:
def __init__(self, size):
self.n = size
self.tree = [0] * (self.n + 2)
self.cnt = 0 # Number of elements in the tree
def add(self, idx, delta):
self.cnt += delta
while idx <= self.n:
self.tree[idx] += delta
idx += idx & -idx
def query(self, idx):
res = 0
while idx > 0:
res += self.tree[idx]
idx -= idx & -idx
return res
def size(self):
return self.cnt
if __name__ == '__main__':
main()
lam6er