結果
問題 |
No.3038 シャッフルの再現
|
ユーザー |
![]() |
提出日時 | 2025-03-31 17:39:58 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,836 bytes |
コンパイル時間 | 151 ms |
コンパイル使用メモリ | 82,776 KB |
実行使用メモリ | 70,692 KB |
最終ジャッジ日時 | 2025-03-31 17:40:45 |
合計ジャッジ時間 | 2,326 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 1 |
other | RE * 21 |
ソースコード
import sys import random from math import gcd MOD = 10**9 + 7 def is_prime(n): if n < 2: return False for p in [2,3,5,7,11,13,17,19,23,29,31]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2,325,9375,28178,450775,9780504,1795265022]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s-1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = gcd(abs(x - y), n) if d != n: return d def factor(n): factors = {} def _factor(n): if n == 1: return if is_prime(n): factors[n] = factors.get(n, 0) + 1 return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return factors def trial_division(n): factors = {} while n % 2 == 0: factors[2] = factors.get(2, 0) + 1 n = n // 2 i = 3 while i*i <= n and n > 1: while n % i == 0: factors[i] = factors.get(i, 0) + 1 n = n // i i += 2 if n > 1: factors[n] = 1 return factors def factorize(n): if n == 0: return {} factors = trial_division(n) remaining = 1 for p in list(factors.keys()): remaining *= p ** factors[p] if remaining != 1 and n != remaining: remaining = n // remaining if remaining != 1: big_factors = factor(remaining) for p in big_factors: factors[p] = factors.get(p, 0) + big_factors[p] return factors def generate_divisors(factors): primes = sorted(factors.keys()) divisors = [1] for p in primes: exp = factors[p] current_p_pows = [p**e for e in range(1, exp+1)] temp = [] for d in divisors: for pow_val in current_p_pows: temp.append(d * pow_val) divisors += temp divisors = sorted(divisors) return divisors def fast_doubling(n, mod): if n == 0: return (0 % mod, 1 % mod) a, b = fast_doubling(n >> 1, mod) c = (a * (2 * b - a)) % mod d = (a * a + b * b) % mod if n & 1: return (d % mod, (c + d) % mod) else: return (c % mod, d % mod) def compute_pi(p): if p == 5: return 20 rem = p % 5 if rem in [1, 4]: s = p - 1 else: s = 2 * (p + 1) factors = factorize(s) divisors = generate_divisors(factors) for d in divisors: if d == 0: continue fn, fn_plus_1 = fast_doubling(d, p) if fn % p == 0 and fn_plus_1 % p == 1: return d return s def main(): input = sys.stdin.read().split() idx = 0 n_case = int(input[idx]) idx += 1 factors_M = [] for _ in range(n_case): p = int(input[idx]) k = int(input[idx+1]) factors_M.append((p, k)) idx +=2 periods = [] for (p, k) in factors_M: if p == 5: pi_p = 20 else: pi_p = compute_pi(p) current_period = pi_p * pow(p, k-1) periods.append(current_period) def lcm(a, b): return a * b // gcd(a, b) result = 1 for period in periods: result = lcm(result, period) % MOD print(result % MOD) if __name__ == "__main__": main()