結果
| 問題 | No.3038 シャッフルの再現 |
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-03-31 17:39:58 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 3,836 bytes |
| 記録 | |
| コンパイル時間 | 151 ms |
| コンパイル使用メモリ | 82,776 KB |
| 実行使用メモリ | 70,692 KB |
| 最終ジャッジ日時 | 2025-03-31 17:40:45 |
| 合計ジャッジ時間 | 2,326 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | RE * 21 |
ソースコード
import sys
import random
from math import gcd
MOD = 10**9 + 7
def is_prime(n):
if n < 2:
return False
for p in [2,3,5,7,11,13,17,19,23,29,31]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2,325,9375,28178,450775,9780504,1795265022]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s-1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = {}
def _factor(n):
if n == 1:
return
if is_prime(n):
factors[n] = factors.get(n, 0) + 1
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
return factors
def trial_division(n):
factors = {}
while n % 2 == 0:
factors[2] = factors.get(2, 0) + 1
n = n // 2
i = 3
while i*i <= n and n > 1:
while n % i == 0:
factors[i] = factors.get(i, 0) + 1
n = n // i
i += 2
if n > 1:
factors[n] = 1
return factors
def factorize(n):
if n == 0:
return {}
factors = trial_division(n)
remaining = 1
for p in list(factors.keys()):
remaining *= p ** factors[p]
if remaining != 1 and n != remaining:
remaining = n // remaining
if remaining != 1:
big_factors = factor(remaining)
for p in big_factors:
factors[p] = factors.get(p, 0) + big_factors[p]
return factors
def generate_divisors(factors):
primes = sorted(factors.keys())
divisors = [1]
for p in primes:
exp = factors[p]
current_p_pows = [p**e for e in range(1, exp+1)]
temp = []
for d in divisors:
for pow_val in current_p_pows:
temp.append(d * pow_val)
divisors += temp
divisors = sorted(divisors)
return divisors
def fast_doubling(n, mod):
if n == 0:
return (0 % mod, 1 % mod)
a, b = fast_doubling(n >> 1, mod)
c = (a * (2 * b - a)) % mod
d = (a * a + b * b) % mod
if n & 1:
return (d % mod, (c + d) % mod)
else:
return (c % mod, d % mod)
def compute_pi(p):
if p == 5:
return 20
rem = p % 5
if rem in [1, 4]:
s = p - 1
else:
s = 2 * (p + 1)
factors = factorize(s)
divisors = generate_divisors(factors)
for d in divisors:
if d == 0:
continue
fn, fn_plus_1 = fast_doubling(d, p)
if fn % p == 0 and fn_plus_1 % p == 1:
return d
return s
def main():
input = sys.stdin.read().split()
idx = 0
n_case = int(input[idx])
idx += 1
factors_M = []
for _ in range(n_case):
p = int(input[idx])
k = int(input[idx+1])
factors_M.append((p, k))
idx +=2
periods = []
for (p, k) in factors_M:
if p == 5:
pi_p = 20
else:
pi_p = compute_pi(p)
current_period = pi_p * pow(p, k-1)
periods.append(current_period)
def lcm(a, b):
return a * b // gcd(a, b)
result = 1
for period in periods:
result = lcm(result, period) % MOD
print(result % MOD)
if __name__ == "__main__":
main()
lam6er