結果
問題 | No.1611 Minimum Multiple with Double Divisors |
ユーザー |
![]() |
提出日時 | 2025-03-31 17:44:32 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,101 bytes |
コンパイル時間 | 322 ms |
コンパイル使用メモリ | 82,160 KB |
実行使用メモリ | 106,824 KB |
最終ジャッジ日時 | 2025-03-31 17:45:46 |
合計ジャッジ時間 | 25,237 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 2 |
other | AC * 1 WA * 9 TLE * 2 -- * 25 |
ソースコード
import sys import math import random def is_prime(n): if n < 2: return False for p in [2,3,5,7,11,13,17,19,23,29,31,37]: if n % p == 0: return n == p d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2,325,9375,28178,450775,9780504,1795265022]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s-1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def pollards_rho(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 if n % 5 == 0: return 5 while True: c = random.randint(1, n-1) f = lambda x: (pow(x, 2, n) + c) % n x, y, d = 2, 2, 1 while d == 1: x = f(x) y = f(f(y)) d = math.gcd(abs(x - y), n) if d != n: return d def factor(n): factors = [] def _factor(n): if n == 1: return if is_prime(n): factors.append(n) return d = pollards_rho(n) _factor(d) _factor(n // d) _factor(n) return factors def solve(): input = sys.stdin.read().split() T = int(input[0]) cases = list(map(int, input[1:T+1])) for X in cases: if X == 1: print(2) continue factors = factor(X) factors_set = set(factors) unique_primes = list(factors_set) unique_primes.sort() primes_list = factors q = 2 while True: if q not in factors_set: if is_prime(q): break q += 1 Y1 = X * q min_Yp = float('inf') for p in factors_set: a_p = primes_list.count(p) k = p ** (a_p + 1) Yp = X * k if Yp < min_Yp: min_Yp = Yp answer = min(Y1, min_Yp) print(answer) if __name__ == '__main__': solve()